IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1506-d513711.html
   My bibliography  Save this article

Investigation of the Churning Loss Reduction in 2D Motion-Converting Mechanisms

Author

Listed:
  • Chuan Ding

    (Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Yu Huang

    (Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Lichao Zhang

    (Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Jian Ruan

    (Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

Abstract

In recent years, two dimensional (2D) hydraulic components have significantly flourished. After a brief development introduction of the 2D pump and 2D flowmeter, it could be concluded that the churning loss, which is caused by the rotational motion of 2D motion-converting mechanisms, has an increasing effect on reducing energy losses. This paper first presents a new 2D motion-converting mechanism and introduces its structure and working principles. To compare it with the former 2D motion-converting mechanism, the same working conditions were applied when designing the new one. Afterward, the generated churning loss by the active parts of the mechanism, such as the new rotor, was well studied by establishing a simplified CFD simulation model and was also verified to have a smaller churning loss than that of the former mechanism. As another key simulation result, the influence of the axial motion of the new rotor was found to be negligible for the churning loss even when the rotational speed was high enough. A test rig was subsequently built up to prove the simulation by monitoring the torque at various rotational speeds. As a result, the churning losses that took place in the new 2D motion-converting mechanism were certainly reduced, and the potential reasons for that were analyzed, as shown in the conclusion section.

Suggested Citation

  • Chuan Ding & Yu Huang & Lichao Zhang & Jian Ruan, 2021. "Investigation of the Churning Loss Reduction in 2D Motion-Converting Mechanisms," Energies, MDPI, vol. 14(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1506-:d:513711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junhui Zhang & Ying Li & Bing Xu & Min Pan & Fei Lv, 2017. "Experimental Study on the Influence of the Rotating Cylinder Block and Pistons on Churning Losses in Axial Piston Pumps," Energies, MDPI, vol. 10(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong Xing & Xinyu Yan & Ying Huang & Cun Gao & Jian Ruan, 2023. "Outlet Pressure and Flow Characteristics of a New Two-Dimensional Piston Pump with an Overlapped Distributor," Energies, MDPI, vol. 16(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    2. Jihai Jiang & Zebo Wang, 2021. "Optimization and Influence of Micro-Chamfering on Oil Film Lubrication Characteristics of Slipper/Swashplate Interface within Axial Piston Pump," Energies, MDPI, vol. 14(7), pages 1-19, April.
    3. Ruizhe Li & Yuhuan Du & Yang Yu, 2022. "Research on Refined Modeling and Fuzzy Control of Electro-Hydrostatic Actuator with Co-Simulation Method," Energies, MDPI, vol. 15(23), pages 1-25, December.
    4. Qun Chao & Junhui Zhang & Bing Xu & Yaoxing Shang & Zongxia Jiao & Zhihui Li, 2018. "Load-Sensing Pump Design to Reduce Heat Generation of Electro-Hydrostatic Actuator Systems," Energies, MDPI, vol. 11(9), pages 1-13, August.
    5. Yu Huang & Jian Ruan & Yong Chen & Chuan Ding & Sheng Li, 2020. "Research on the Volumetric Efficiency of 2D Piston Pumps with a Balanced Force," Energies, MDPI, vol. 13(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1506-:d:513711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.