IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1286-d506353.html
   My bibliography  Save this article

Compact Modelling of Electrical, Optical and Thermal Properties of Multi-Colour Power LEDs Operating on a Common PCB

Author

Listed:
  • Krzysztof Górecki

    (Department of Marine Electronics, Faculty of Electrical Engineering, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland)

  • Przemysław Ptak

    (Department of Marine Electronics, Faculty of Electrical Engineering, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland)

Abstract

This paper concerns the problem of modelling electrical, thermal and optical properties of multi-colour power light-emitting diodes (LEDs) situated on a common PCB (Printed Circuit Board). A new form of electro-thermo-optical model of such power LEDs is proposed in the form of a subcircuit for SPICE (Simulation Program with Integrated Circuits Emphasis). With the use of this model, the currents and voltages of the considered devices, their junction temperature and selected radiometric parameters can be calculated, taking into account self-heating phenomena in each LED and mutual thermal couplings between each pair of the considered devices. The form of the formulated model is described, and a manner of parameter estimation is also proposed. The correctness and usefulness of the proposed model are verified experimentally for six power LEDs emitting light of different colours and mounted on an experimental PCB prepared by the producer of the investigated devices. Verification was performed for the investigated diodes operating alone and together. Good agreement between the results of measurements and computations was obtained. It was also proved that the main thermal and optical parameters of the investigated LEDs depend on a dominant wavelength of the emitted light.

Suggested Citation

  • Krzysztof Górecki & Przemysław Ptak, 2021. "Compact Modelling of Electrical, Optical and Thermal Properties of Multi-Colour Power LEDs Operating on a Common PCB," Energies, MDPI, vol. 14(5), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1286-:d:506353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anton Alexeev & Grigory Onushkin & Jean-Paul Linnartz & Genevieve Martin, 2019. "Multiple Heat Source Thermal Modeling and Transient Analysis of LEDs," Energies, MDPI, vol. 12(10), pages 1-28, May.
    2. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz & Damian Mazur, 2019. "Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources," Energies, MDPI, vol. 12(20), pages 1-20, October.
    3. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz, 2020. "Modeling of Selected Lighting Parameters of LED Panel," Energies, MDPI, vol. 13(14), pages 1-22, July.
    4. András Poppe & Gábor Farkas & Lajos Gaál & Gusztáv Hantos & János Hegedüs & Márta Rencz, 2019. "Multi-Domain Modelling of LEDs for Supporting Virtual Prototyping of Luminaires," Energies, MDPI, vol. 12(10), pages 1-32, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Górecki & Przemysław Ptak & Marcin Janicki & Małgorzata Napieralska, 2021. "Comparison of Properties for Selected Experimental Set-Ups Dedicated to Measuring Thermal Parameters of Power LEDs," Energies, MDPI, vol. 14(11), pages 1-14, June.
    2. Przemysław Ptak & Krzysztof Górecki & Jakub Heleniak & Mariusz Orlikowski, 2021. "Investigations of Electrical and Optical Parameters of Some LED Luminaires—A Study Case," Energies, MDPI, vol. 14(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoni Różowicz & Henryk Wachta & Krzysztof Baran & Marcin Leśko & Sebastian Różowicz, 2022. "Arrangement of LEDs and Their Impact on Thermal Operating Conditions in High-Power Luminaires," Energies, MDPI, vol. 15(21), pages 1-17, November.
    2. Genevieve Martin & Christophe Marty & Robin Bornoff & Andras Poppe & Grigory Onushkin & Marta Rencz & Joan Yu, 2019. "Luminaire Digital Design Flow with Multi-Domain Digital Twins of LEDs," Energies, MDPI, vol. 12(12), pages 1-28, June.
    3. Marc van der Schans & Joan Yu & Genevieve Martin, 2020. "Digital Luminaire Design Using LED Digital Twins—Accuracy and Reduced Computation Time: A Delphi4LED Methodology," Energies, MDPI, vol. 13(18), pages 1-19, September.
    4. Marcin Janicki & Przemysław Ptak & Tomasz Torzewicz & Krzysztof Górecki, 2020. "Compact Thermal Modeling of Modules Containing Multiple Power LEDs," Energies, MDPI, vol. 13(12), pages 1-9, June.
    5. László Pohl & Gusztáv Hantos & János Hegedüs & Márton Németh & Zsolt Kohári & András Poppe, 2020. "Mixed Detailed and Compact Multi-Domain Modeling to Describe CoB LEDs," Energies, MDPI, vol. 13(16), pages 1-39, August.
    6. Ram Adhikari & Dawood Beyragh & Majid Pahlevani & David Wood, 2020. "A Numerical and Experimental Study of a Novel Heat Sink Design for Natural Convection Cooling of LED Grow Lights," Energies, MDPI, vol. 13(16), pages 1-19, August.
    7. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz, 2020. "Modeling of Selected Lighting Parameters of LED Panel," Energies, MDPI, vol. 13(14), pages 1-22, July.
    8. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz & Damian Mazur, 2019. "Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources," Energies, MDPI, vol. 12(20), pages 1-20, October.
    9. Sungjoon Byun & Seounghwan Hyeon & Kwan-Soo Lee, 2022. "Guide Vane for Thermal Enhancement of a LED Heat Sink," Energies, MDPI, vol. 15(7), pages 1-13, March.
    10. Przemyslaw Tabaka, 2021. "Influence of Replacement of Sodium Lamps in Park Luminaires with LED Sources of Different Closest Color Temperature on the Effect of Light Pollution and Energy Efficiency," Energies, MDPI, vol. 14(19), pages 1-30, October.
    11. János Hegedüs & Gusztáv Hantos & András Poppe, 2020. "Lifetime Modelling Issues of Power Light Emitting Diodes," Energies, MDPI, vol. 13(13), pages 1-30, July.
    12. Piotr Tomczuk & Marcin Chrzanowicz & Piotr Jaskowski & Marcin Budzynski, 2021. "Evaluation of Street Lighting Efficiency Using a Mobile Measurement System," Energies, MDPI, vol. 14(13), pages 1-25, June.
    13. Krzysztof Dziarski & Arkadiusz Hulewicz & Piotr Kuwałek & Grzegorz Wiczyński, 2023. "Methods of Measurement of Die Temperature of Semiconductor Elements: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    14. Sebastian Różowicz & Andrzej Zawadzki & Maciej Włodarczyk & Henryk Wachta & Krzysztof Baran, 2020. "Properties of Fractional-Order Magnetic Coupling," Energies, MDPI, vol. 13(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1286-:d:506353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.