IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p848-d494539.html
   My bibliography  Save this article

Experimental Analysis of Power Flows in the Regenerative Vibration Reduction System with a Magnetorheological Damper

Author

Listed:
  • Bogdan Sapiński

    (Department of Process Control, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland)

  • Paweł Orkisz

    (Department of Process Control, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland)

  • Łukasz Jastrzębski

    (Department of Process Control, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland)

Abstract

The aim of the work is to investigate power flows in the vibration reduction system equipped with a magnetorheological (MR) damper and energy regeneration. For this purpose, experiments were conducted in the test rig compound of the shaker and the vibration reduction system (electromagnetic harvester, MR damper, spring) which are attached to the sprung mass. The experimental data acquired under sine excitations enabled us to analyze instantaneous power fluxes, as well as a rate of inertial energy changes in the system.

Suggested Citation

  • Bogdan Sapiński & Paweł Orkisz & Łukasz Jastrzębski, 2021. "Experimental Analysis of Power Flows in the Regenerative Vibration Reduction System with a Magnetorheological Damper," Energies, MDPI, vol. 14(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:848-:d:494539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/848/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogdan Sapiński & Paweł Orkisz, 2021. "Real-Time Sensing Action of the Electromagnetic Vibration-Based Energy Harvester for a Magnetorheological Damper Control," Energies, MDPI, vol. 14(10), pages 1-18, May.
    2. Arkadiusz Kozieł & Łukasz Jastrzębski & Bogdan Sapiński, 2022. "Advanced Prototype of an Electrical Control Unit for an MR Damper Powered by Energy Harvested from Vibrations," Energies, MDPI, vol. 15(13), pages 1-17, June.
    3. Paweł Orkisz & Bogdan Sapiński, 2022. "Vibration Reduction System with a Linear Motor: Operation Modes, Dynamic Performance, Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:848-:d:494539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.