IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1032-d500128.html
   My bibliography  Save this article

Case Study of Roadway Deformation Failure Mechanisms: Field Investigation and Numerical Simulation

Author

Listed:
  • Guang Li

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Fengshan Ma

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

  • Jie Guo

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

  • Haijun Zhao

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

Abstract

The safety of underground roadways is a major issue in mining engineering, with economic impacts and potential threats to the lives of workers. Elucidating the deformation failure mechanisms is necessary to solve these problems. The deformation failure modes and characteristics of roadways buried at various depths were investigated using a detailed field survey in the Jinchuan nickel mine. At greater depths, roadway deformation was more serious, the creep phenomena were more prominent, and support structures were more prone to failure. Numerical simulations were performed on the roadways under various geo-stresses and rock mass structures, which indicated that the roadway deformation mode was mainly controlled by a rock mass structure in a lower stress environment and the control effect was weakened with the gradual increase of ground stress. Six deformation failure types were proposed to examine roadway deformation failure mechanisms. Field representation of each failure type was characterized under natural or induced conditions. The findings provide a reference for stability evaluation and support the design of roadway engineering under similar geological conditions.

Suggested Citation

  • Guang Li & Fengshan Ma & Jie Guo & Haijun Zhao, 2021. "Case Study of Roadway Deformation Failure Mechanisms: Field Investigation and Numerical Simulation," Energies, MDPI, vol. 14(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1032-:d:500128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guang Li & Fengshan Ma & Gang Liu & Haijun Zhao & Jie Guo, 2019. "A Strain-Softening Constitutive Model of Heterogeneous Rock Mass Considering Statistical Damage and Its Application in Numerical Modeling of Deep Roadways," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    2. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    3. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaigang Liu & Jianbiao Bai & Xiangyu Wang & Shuai Yan & Jiaxin Zhao, 2021. "Field and Numerical Study on Deformation and Failure Characteristics of Deep High-Stress Main Roadway in Dongpang Coal Mine," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    2. Megavath Vijay Kumar & T. Subba Reddy & P. Sarala & P. Srinivasa Varma & Obbu Chandra Sekhar & Abdulrahman Babqi & Yasser Alharbi & Basem Alamri & Ch. Rami Reddy, 2022. "Experimental Investigation and Performance Characteristics of Francis Turbine with Different Guide Vane Openings in Hydro Distributed Generation Power Plants," Energies, MDPI, vol. 15(18), pages 1-24, September.
    3. Guang Li & Rong Lu & Fengshan Ma & Jie Guo, 2022. "Analysis of Acoustic Emission Characteristics and Failure Mode of Deep Surrounding Rock of Sanshandao Gold Mine," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    4. Kamil Szewerda & Jarosław Tokarczyk & Andrzej Wieczorek, 2021. "Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail," Energies, MDPI, vol. 14(6), pages 1-15, March.
    5. Jerzy Świder & Kamil Szewerda & Krzysztof Herbuś & Jerzy Jura, 2021. "Testing the Impact of Braking Algorithm Parameters on Acceleration and Braking Distance for a Suspended Monorail with Regard to Acceptable Travel Speed in Hard Coal Mines," Energies, MDPI, vol. 14(21), pages 1-20, November.
    6. Charalampos Basdekis & Apostolos Christopoulos & Ioannis Katsampoxakis & Vasileios Nastas, 2022. "The Impact of the Ukrainian War on Stock and Energy Markets: A Wavelet Coherence Analysis," Energies, MDPI, vol. 15(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.
    2. Guang Li & Rong Lu & Fengshan Ma & Jie Guo, 2022. "Analysis of Acoustic Emission Characteristics and Failure Mode of Deep Surrounding Rock of Sanshandao Gold Mine," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    3. Zhibiao Guo & Haohao Wang & Zimin Ma & Pengfei Wang & Xiaohui Kuai & Xianzhe Zhang, 2021. "Research on the Transmission of Stresses by Roof Cutting near Gob Rocks," Energies, MDPI, vol. 14(5), pages 1-24, February.
    4. Sylwester Rajwa & Tomasz Janoszek & Janina Świątek & Andrzej Walentek & Dominik Bałaga, 2022. "Numerical Simulation of the Impact of Unmined Longwall Panel on the Working Stability of a Longwall Using UDEC 2D—A Case Study," Energies, MDPI, vol. 15(5), pages 1-19, February.
    5. Houqiang Yang & Changliang Han & Nong Zhang & Yuantian Sun & Dongjiang Pan & Changlun Sun, 2020. "Long High-Performance Sustainable Bolt Technology for the Deep Coal Roadway Roof: A Case Study," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    6. Chao Su & Pengfei Jiang & Peilin Gong & Chang Liu & Peng Li & Yuedong Liu, 2022. "Analysis of Roof Stability of Coal Roadway Heading Face," Energies, MDPI, vol. 15(20), pages 1-17, October.
    7. Shengrong Xie & Fangfang Guo & Yiyi Wu, 2022. "Control Techniques for Gob-Side Entry Driving in an Extra-Thick Coal Seam with the Influence of Upper Residual Coal Pillar: A Case Study," Energies, MDPI, vol. 15(10), pages 1-21, May.
    8. Pengze Liu & Lin Gao & Pandong Zhang & Guiyi Wu & Yongyin Wang & Ping Liu & Xiangtao Kang & Zhenqian Ma & Dezhong Kong & Sen Han, 2022. "Physical Similarity Simulation of Deformation and Failure Characteristics of Coal-Rock Rise under the Influence of Repeated Mining in Close Distance Coal Seams," Energies, MDPI, vol. 15(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1032-:d:500128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.