IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p478-d482076.html
   My bibliography  Save this article

Analysis of Cavity PD Characteristics’ Sensitivity to Changes in the Supply Voltage Frequency

Author

Listed:
  • Tapiwa Venge

    (School of Electrical and Information Engineering (EIE), Faculty of Engineering and the Built Environment (EBE), University of the Witwatersrand Johannesburg, Private Bag 3, Johannesburg 2050, South Africa)

  • Cuthbert Nyamupangedengu

    (School of Electrical and Information Engineering (EIE), Faculty of Engineering and the Built Environment (EBE), University of the Witwatersrand Johannesburg, Private Bag 3, Johannesburg 2050, South Africa)

Abstract

The supply voltage frequency effect on partial discharge (PD) phenomena has continued to draw research interest. Although most high voltage equipment operates at power frequency (50/60 Hz), testing is often done at different frequencies for various reasons. Despite some agreements and inconsistencies for the research findings of PD activity’s frequency dependence, there has been consensus on the recognition of the discharge mechanism parameters that influence how the supply voltage frequency affects PD activity. These parameters include statistical time lag, discharge area surface conductivity, and the residual charge decay. In this paper, a 3-capacitor model (ABC) is used to simulate how the changes in the discharge mechanism parameters influence PD characteristics as a function of the supply voltage frequency. The findings are that the phase-resolved partial discharge pattern (PRPDP) and PD repetition rate (PDRR) characteristics are more sensitive to variations in the probability of the seed electron availability at higher frequencies of the supply voltage. The opposite trend is observed for the cavity surface resistance. At lower resistance of cavity surface, the PRPDP and PDRR characteristics are more sensitive to changes in the supply voltage frequency than at higher resistances. The paper also confirms that incorporating equivalent resistances in the ABC model makes it more authentic than the model comprising of capacitors only.

Suggested Citation

  • Tapiwa Venge & Cuthbert Nyamupangedengu, 2021. "Analysis of Cavity PD Characteristics’ Sensitivity to Changes in the Supply Voltage Frequency," Energies, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:478-:d:482076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/478/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:478-:d:482076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.