IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8519-d704792.html
   My bibliography  Save this article

Comparative Analysis of Low-Grade Heat Utilization Methods for Thermal Power Plants with Back-Pressure Steam Turbines

Author

Listed:
  • Nikolay Rogalev

    (Department of Thermal Power Plants, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Vladimir Kindra

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Ivan Komarov

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Sergey Osipov

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Olga Zlyvko

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Dmitrii Lvov

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

Abstract

Thermal power plants (TPPs) with back-pressure steam turbines (BPSTs) were widely used for electricity and steam production in the Union of Soviet Socialist Republics (USSR) due to their high efficiency. The collapse of the USSR in 1991 led to a decrease in industrial production, as a result of which, steam production in Russia was reduced and BPSTs were left without load. To resume the operation of TPPs with BPSTs, it is necessary to modernize the existing power units. This paper presents the results of the thermodynamic analysis of different methods of modernization of TPPs with BPSTs: the superstructure of the steam low-pressure turbine (LPT) and the superstructure of the power unit operating on low-boiling-point fluid. The influence of ambient temperature on the developed cycles’ efficiency was evaluated. It was found that the usage of low-boiling-point fluid is thermodynamically efficient for an ambient temperature lower than 7 °C. Moreover, recommendations for the choice of reconstruction method were formulated based on technical assessments.

Suggested Citation

  • Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Sergey Osipov & Olga Zlyvko & Dmitrii Lvov, 2021. "Comparative Analysis of Low-Grade Heat Utilization Methods for Thermal Power Plants with Back-Pressure Steam Turbines," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8519-:d:704792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8519/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Sergey Osipov, 2023. "An Overview of Small Nuclear Power Plants for Clean Energy Production: Comparative Analysis of Distributed Generation Technologies and Future Perspectives," Energies, MDPI, vol. 16(13), pages 1-19, June.
    2. Vladimir Kindra & Igor Maksimov & Ivan Komarov & Cheng Xu & Tuantuan Xin, 2023. "Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles," Energies, MDPI, vol. 16(9), pages 1-25, May.
    3. Vladimir Kindra & Nikolay Rogalev & Andrey Rogalev & Vladimir Naumov & Ekaterina Sabanova, 2022. "Thermodynamic Optimization of Low-Temperature Cycles for the Power Industry," Energies, MDPI, vol. 15(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8519-:d:704792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.