IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8031-d692817.html
   My bibliography  Save this article

Nonlinear Vibration Analysis of Curved Piezoelectric-Layered Nanotube Resonator

Author

Listed:
  • Zia Saadatnia

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada)

Abstract

Piezoelectric-based nano resonators are smart structures that can be used for mechanical sensors and actuators in miniature systems. In this study, the nonlinear vibration behavior of a curved piezoelectric-layered nanotube resonator was investigated. The curved structure comprises a core nanotube and a slender layer of piezoelectric material covering the inner nanotube where a harmonic voltage is applied to the piezoelectric layer. Applying the energy method and Hamiltonian principle in association with non-local theories, the governing equations of motion of the targeted system are obtained. Then, the problem is solved using the Galerkin and multiple scales methods, and the system responses under external excitation and parametric load are found. Various resonance conditions are investigated including primary and parametric resonances, and the frequency responses are obtained considering steady state motions. The effects of different parameters such as applied voltage, piezoelectric thickness, and structural curvature on the system responses are investigated. It is shown that the applied harmonic voltage to the piezoelectric layer can cause a parametric resonance in the structural vibration, and the applied harmonic point load to the structure can cause a primary resonance in the vibration response. Considering two structural curvatures including quadratic and cubic curves, it is also found that the waviness and curve shape parameters can tune the nonlinear hardening and softening behaviors of the system and at specific curve shapes, the vibration response of the targeted structure acts similar to that of a linear system. This study can be targeted toward the design of curved piezoelectric nano-resonators in small-scale sensing and actuation systems.

Suggested Citation

  • Zia Saadatnia, 2021. "Nonlinear Vibration Analysis of Curved Piezoelectric-Layered Nanotube Resonator," Energies, MDPI, vol. 14(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8031-:d:692817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8031/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8031-:d:692817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.