IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6844-d659943.html
   My bibliography  Save this article

A Case Study on the Water-Oil Interface of Shunbei Oilfield Based on Dynamic Data

Author

Listed:
  • Hailong Liu

    (School of Energy Resources, China University of Geosciences (Beijing), Haidian District, Beijing 100083, China
    Northwest Center, Sinopec Petroleum Exploration and Development Research Institute, Haidian District, Beijing 100083, China)

  • Fengpeng Lai

    (School of Energy Resources, China University of Geosciences (Beijing), Haidian District, Beijing 100083, China)

Abstract

Shunbei Oilfield is characterized by substantial heterogeneity and a complex oil–water relationship. The water-oil interface is dynamically changing, and it is a crucial parameter for reserve calculation and evaluation. The main purpose is to analyze the effect of fluid flow in multi-scale media on the water-oil interface. It is well known that the fracture-cavity reservoirs have well-developed fractures and karst caves, and their distribution is complex in Shunbei Oilfield. This paper presents a way to simplify the fracture-cavity system first, then uses a unit of oil wells as a system to study the water-oil interface, which avoids impact on the water-oil interface due to oil production. A detailed step by step procedure for solving the semi-analytical solution of water-oil interface in a fracture-cavity reservoir by using an explicit algorithm and a successive steady-state method is presented. The solution can be used to investigate water-oil interface behavior. In this paper, we validated this method with the actual data for a relatively similar actual reservoir. Sensitivity analyses about the effects of the main parameters including production rates, cave volume and initial oil–water volume ratio on interfacial migration velocity are also presented in detail. The water breaking time of oil wells is fully investigated. The water-oil interface movement chart under different development conditions is established to predict the water-oil interface in the late stage of oil well production and extend the waterless developing period. Being based on this chart, a water breakthrough warning can be realized, and oil recovery can be improved. The findings of the research have led to the conclusion that the rising speed of water-oil interface is proportional to the production rate, on the contrary, it is inversely proportional to cave volume and initial oil–water volume ratio. As well production goes on, the water-oil interface rises at different rates. After the well is put into production for one year, the water-oil interface rises by 16.38%, 12.56% and 4.24% according to the condition that production rate is 10%, the initial oil–water volume ratio is 0.7, and the cave volume is 100 × 10 4 m 3 . This method is not only suitable for any period and any well type in the development of Shunbei Oilfield; it also has the function of calculating the real-time water-oil interface of a single well and multi-wells. This new method has the characteristics of easy calculation and high accuracy. The method in this paper can be further developed as it has great applicability in fracture-cavity reservoirs.

Suggested Citation

  • Hailong Liu & Fengpeng Lai, 2021. "A Case Study on the Water-Oil Interface of Shunbei Oilfield Based on Dynamic Data," Energies, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6844-:d:659943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6844/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6844-:d:659943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.