IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6402-d651009.html
   My bibliography  Save this article

Feedback Linearization and Maximum Torque per Ampere Control Methods of Cup Rotor Permanent-Magnet Doubly Fed Machine

Author

Listed:
  • Jianning Shi

    (School of Electrical and Information Engineering, Tianjin University, No.92 Weijin Road, Tianjin 300072, China)

  • Chaoying Xia

    (School of Electrical and Information Engineering, Tianjin University, No.92 Weijin Road, Tianjin 300072, China)

Abstract

This paper establishes the state-space model of the cup rotor permanent-magnet doubly fed machine in the synchronous reference frame. The feedback-linearization control method is used to realize the decoupling control of flux and torque. Then, the upper and lower load torque boundaries are solved. Furthermore, to minimize the stator current magnitude of the control machine under a certain torque, the maximum torque per ampere (MTPA) control is derived. Finally, simulation results demonstrate the good decoupling performance of the feedback-linearization control method and the correctness of the load torque boundaries. In addition, the effectiveness and robustness of the proposed control methods are also demonstrated.

Suggested Citation

  • Jianning Shi & Chaoying Xia, 2021. "Feedback Linearization and Maximum Torque per Ampere Control Methods of Cup Rotor Permanent-Magnet Doubly Fed Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6402-:d:651009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaoying Xia & Xiaoxin Hou, 2016. "Study on the Static Load Capacity and Synthetic Vector Direct Torque Control of Brushless Doubly Fed Machines," Energies, MDPI, vol. 9(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoying Xia & Jiaxiang Bi & Jianning Shi, 2023. "Investigation of a Cup-Rotor Permanent-Magnet Doubly Fed Machine for Extended-Range Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Ruan & Chaohao Kan & Chenglong Chu & Taian Ren & Qiuming Chen, 2019. "Improvements of the Starting Performance of A Novel Brushless Doubly-fed Motor Based on the Composite Coils," Energies, MDPI, vol. 12(6), pages 1-20, March.
    2. Chaoying Xia & Jiaxiang Bi & Jianning Shi, 2023. "Investigation of a Cup-Rotor Permanent-Magnet Doubly Fed Machine for Extended-Range Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-23, March.
    3. Mei Su & Weiyu Jin & Guanguan Zhang & Weiyi Tang & Frede Blaabjerg, 2018. "Internal Model Current Control of Brushless Doubly Fed Induction Machines," Energies, MDPI, vol. 11(7), pages 1-19, July.
    4. Zhenming Li & Xuefan Wang & Lezhi Ou & Xinmai Gao & Fei Xiong, 2019. "Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine," Energies, MDPI, vol. 12(6), pages 1-14, March.
    5. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    6. Kai Ji & Shenghua Huang, 2018. "Direct Flux Control for Stand-Alone Operation Brushless Doubly Fed Induction Generators Using a Resonant-Based Sliding-Mode Control Approach," Energies, MDPI, vol. 11(4), pages 1-22, April.
    7. Chaoying Xia & Xiaoxin Hou & Feng Chen, 2018. "Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6402-:d:651009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.