IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6386-d650745.html
   My bibliography  Save this article

Design of Feedback Control Strategies in a Plant-Wide Wastewater Treatment Plant for Simultaneous Evaluation of Economics, Energy Usage, and Removal of Nutrients

Author

Listed:
  • Abdul Gaffar Sheik

    (Department of Chemical Engineering, National Institute of Technology, Warangal 506 004, Telangana, India)

  • Eagalapati Tejaswini

    (Department of Chemical Engineering, National Institute of Technology, Warangal 506 004, Telangana, India)

  • Murali Mohan Seepana

    (Department of Chemical Engineering, National Institute of Technology, Warangal 506 004, Telangana, India)

  • Seshagiri Rao Ambati

    (Department of Chemical Engineering, National Institute of Technology, Warangal 506 004, Telangana, India)

  • Montse Meneses

    (Department of Telecommunication and System Engineering, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain)

  • Ramon Vilanova

    (Department of Telecommunication and System Engineering, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain)

Abstract

Simultaneous removal of nitrogen and phosphorous is a recommended practice while treating wastewater. In the present study, control strategies based on proportional-integral (PI), model predictive control (MPC), and fuzzy logic are developed and implemented on a plant-wide wastewater treatment plant. Four combinations of control frameworks are developed in order to reduce the operational cost and improve the effluent quality. As a working platform, a Benchmark simulation model (BSM2-P) is used. A default control framework with PI controllers is used to control nitrate and dissolved oxygen (DO) by manipulating the internal recycle and oxygen mass transfer coefficient (K L a). Hierarchical control topology is proposed in which a lower-level control framework with PI controllers is implemented to DO in the sixth reactor by regulating the K L a of the fifth, sixth, and seventh reactors, and fuzzy and MPC are used at the supervisory level. This supervisory level considers the ammonia in the last aerobic reactor as a feedback signal to alter the DO set-points. PI-fuzzy showed improved effluent quality by 21.1%, total phosphorus removal rate by 33.3% with an increase of operational cost, and a slight increase in the production rates of greenhouse gases. In all the control design frameworks, a trade-off is observed between operational cost and effluent quality.

Suggested Citation

  • Abdul Gaffar Sheik & Eagalapati Tejaswini & Murali Mohan Seepana & Seshagiri Rao Ambati & Montse Meneses & Ramon Vilanova, 2021. "Design of Feedback Control Strategies in a Plant-Wide Wastewater Treatment Plant for Simultaneous Evaluation of Economics, Energy Usage, and Removal of Nutrients," Energies, MDPI, vol. 14(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6386-:d:650745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Revollar & R. Vilanova & P. Vega & M. Francisco & M. Meneses, 2020. "Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective," Sustainability, MDPI, vol. 12(3), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Ławryńczuk & Piotr M. Marusak & Patryk Chaber & Dawid Seredyński, 2022. "Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods," Energies, MDPI, vol. 15(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    2. Bárbara de Matos & Rodrigo Salles & Jérôme Mendes & Joana R. Gouveia & António J. Baptista & Pedro Moura, 2022. "A Review of Energy and Sustainability KPI-Based Monitoring and Control Methodologies on WWTPs," Mathematics, MDPI, vol. 11(1), pages 1-22, December.
    3. Irena Tušer & Alena Oulehlová, 2021. "Risk Assessment and Sustainability of Wastewater Treatment Plant Operation," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    4. David Palma-Heredia & Manel Poch & Miquel À. Cugueró-Escofet, 2020. "Implementation of a Decision Support System for Sewage Sludge Management," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    5. Paulina Szulc & Jędrzej Kasprzak & Zbysław Dymaczewski & Przemysław Kurczewski, 2021. "Life Cycle Assessment of Municipal Wastewater Treatment Processes Regarding Energy Production from the Sludge Line," Energies, MDPI, vol. 14(2), pages 1-29, January.
    6. Tamás Karches, 2022. "Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling," Energies, MDPI, vol. 15(17), pages 1-13, August.
    7. Saad M. Alramthi & Gamila H. Ali & Atiah M. Elthagafi & Saad H. Eldosari & Bao-Ku Zhu & Hosam M. Safaa, 2022. "Oxidation Ditches for Recycling and Reusing Wastewater Are Critical for Long-Term Sustainability—A Case Study," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    8. Kate Anderson & James Grymes & Alexandra Newman & Adam Warren, 2023. "North Carolina Water Utility Builds Resilience with Distributed Energy Resources," Interfaces, INFORMS, vol. 53(4), pages 247-265, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6386-:d:650745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.