IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5776-d634840.html
   My bibliography  Save this article

Investigation on Bubble Diameter Distribution in Upward Flow by the Two-Fluid and Multi-Fluid Models

Author

Listed:
  • Yongzhong Zeng

    (State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China)

  • Weilin Xu

    (State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Bubble flow can be simulated by the two-fluid model and the multi-fluid model based on the Eulerian method. In this paper, the gas phase was further divided into several groups of dispersed phases according to the diameter by using the Eulerian-Eulerian (E-E) multi-fluid model. The diameters of bubbles in each group were considered to be the same, and their distributions were reorganized according to a specific probability density function. The experimental data of two kinds of bubble flow with different characteristics were used to verify the model. With the help of the open-source CFD software, OpenFOAM-7.x (OpenFOAM-7.0, produced by OpenFOAM foundation, Reading, England), the influences of the group number, the probability distribution function, and the parameters of different bubble diameters on the calculation results were studied. Meanwhile, the numerical simulation results were compared with the two-fluid model and the experimental data. The results show that for the bubble flow with the unimodal distribution, both the multi-fluid model and the two-fluid model can obtain the distribution of gas volume fraction along the pipe radius. The calculation results of the multi-fluid model agree with the experimental data, while those of the two-fluid model differ greatly from the experimental data, which verifies the advantage of the multi-fluid model in calculating the distribution of gas volume fraction in the polydisperse bubble flow. Meanwhile, the multi-fluid model can be used to accurately predict the distribution of the parameters of each phase of the bubble flow if the reasonable bubble diameter distribution is provided and the appropriate interphase force calculation model is determined.

Suggested Citation

  • Yongzhong Zeng & Weilin Xu, 2021. "Investigation on Bubble Diameter Distribution in Upward Flow by the Two-Fluid and Multi-Fluid Models," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5776-:d:634840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5776/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Feng & Huafeng Zhu & Ying Song & Wenchen Cao & Ziyuan Li & Wenlong Jia, 2022. "Modeling of Gas Migration in Large Elevation Difference Oil Transmission Pipelines during the Commissioning Process," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Maksim A. Pakhomov & Viktor I. Terekhov, 2022. "Modeling of Turbulent Heat-Transfer Augmentation in Gas-Droplet Non-Boiling Flow in Diverging and Converging Axisymmetric Ducts with Sudden Expansion," Energies, MDPI, vol. 15(16), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5776-:d:634840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.