IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5126-d617680.html
   My bibliography  Save this article

Lightning Protection of the Explosion Airflow Arc-Quenching Gap for 110 kV Transmission Lines

Author

Listed:
  • Dong Wu

    (Department of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541000, China)

  • Ju-feng Wang

    (The Key Laboratory of High Voltage, Department of Electrical Engineering, Guangxi University, Nanning 530004, China)

Abstract

With the increase in the voltage level and number of transmission lines, the probability of lightning strikes on transmission lines is significantly increased, while lightning breakage accidents occur frequently. Therefore, an explosion airflow arc-quenching gap for 110 kV transmission lines was developed based on the idea of rapid extinction. A mathematical model of the detonation wave based on the CJ (Chapman–Jouget) detonation wave theory was developed to calculate the detonation air pressure and analyze its influencing factors. ANSYS software and the magnetohydrodynamic (MHD) model were used to simulate the process of detonation airflow coupled with an arc, and the simulation results indicated that the power frequency arc was evidently suppressed with the influence of airflow, which can effectively prevent arcing. A combined impulse and power frequency test and arc-quenching tests were performed to verify the effectiveness of the arc-quenching gap. The results of the combined test indicated that the arc burn time was 0.1 ms and that no power frequency continuous current was displayed. The results ensured the accuracy of the simulation model. The results of the arc-quenching tests proved that the explosion airflow can extinguish a power frequency arc with an amplitude of 40 kA in half of a power frequency arc cycle.

Suggested Citation

  • Dong Wu & Ju-feng Wang, 2021. "Lightning Protection of the Explosion Airflow Arc-Quenching Gap for 110 kV Transmission Lines," Energies, MDPI, vol. 14(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5126-:d:617680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5126/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5126-:d:617680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.