IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1960-d346223.html
   My bibliography  Save this article

Impact of Core Sheet Cutting Method on Parameters of Induction Motors

Author

Listed:
  • Maria Dems

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Krzysztof Komeza

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Witold Kubiak

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Jacek Szulakowski

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

The method of cutting motor core sheets causes a change in their magnetic properties and core losses, especially additional losses. Reducing motor losses is very important because of the fulfillment of increasingly stringent requirements set by international regulations for reducing electricity consumption. Due to fact that more and more often induction motors are supplied with high-frequency voltage, core losses are beginning to play a dominant role in the motor’s loss balance. That is why accurate determination of these losses is very important and cutting has a significant impact on them. This report shows how the method of cutting sheet metal affects losses in the finished induction motor working in a wide frequency range. The paper presents the impact of various motor core fabrication technologies on its operational parameters and an approximate way of including this impact in analytical calculations at the design stage of new machine designs, as it is necessary to use sheet metal cutting technologies such as laser or electrical discharge machining (EDM) at the prototype stage. The proposed method is based on measurements of sheet parameters made on toroidal samples with appropriately selected dimensions, so that the width of the sample corresponds to the average width of the motor core elements.

Suggested Citation

  • Maria Dems & Krzysztof Komeza & Witold Kubiak & Jacek Szulakowski, 2020. "Impact of Core Sheet Cutting Method on Parameters of Induction Motors," Energies, MDPI, vol. 13(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1960-:d:346223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengliu Ai & Christopher H.T. Lee & James L. Kirtley & Yuanfeng Huang & Haifeng Wang & Zhiwei Zhang, 2019. "A Hybrid Methodology for Analyzing the Performance of Induction Motors with Efficiency Improvement by Specific Commercial Measures," Energies, MDPI, vol. 12(23), pages 1-24, November.
    2. Zbigniew Gmyrek & Krzysztof Smółka, 2020. "Efficiency Analysis of Fractional KiloWatt Reluctance Motors with Various Frame Sizes, Taking into Account the Impact of the Punching Process," Energies, MDPI, vol. 13(2), pages 1-11, January.
    3. Vladimir Kindl & Radek Cermak & Zelmira Ferkova & Bohumil Skala, 2020. "Review of Time and Space Harmonics in Multi-Phase Induction Machine," Energies, MDPI, vol. 13(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elzbieta Lesniewska & Michal Kaczmarek & Ernest Stano, 2020. "3D Electromagnetic Field Analysis Applied to Evaluate the Accuracy of a Voltage Transformer under Distorted Voltage," Energies, MDPI, vol. 14(1), pages 1-16, December.
    2. Osaruyi Osemwinyen & Ahmed Hemeida & Floran Martin & Anouar Belahcen & Antero Arkkio, 2020. "Parameter Estimation of Inter-Laminar Fault-Region in Laminated Sheets Through Inverse Approach," Energies, MDPI, vol. 13(12), pages 1-10, June.
    3. Maria Dems & Zbigniew Gmyrek & Krzysztof Komeza, 2021. "Analytical Model of an Induction Motor Taking into Account the Punching Process Influence on the Material Properties’ Change of Lamination," Energies, MDPI, vol. 14(9), pages 1-14, April.
    4. Elzbieta Lesniewska & Daniel Roger, 2023. "Selection of the Winding Type of Solid-State Transformers in Terms of Transmitting the Greatest Possible Power in the Frequency Range from 500 Hz to 6000 Hz," Energies, MDPI, vol. 16(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel R. Arahal & Manuel G. Satué & Federico Barrero & Manuel G. Ortega, 2021. "Adaptive Cost Function FCSMPC for 6-Phase IMs," Energies, MDPI, vol. 14(17), pages 1-14, August.
    2. Jan Laksar & Radek Cermak & Karel Hruska, 2021. "Challenges in the Electromagnetic Design of Multiphase Machines: Winding and Equivalent Circuit Parameters," Energies, MDPI, vol. 14(21), pages 1-19, November.
    3. Duc Tan Vu & Ngac Ky Nguyen & Eric Semail & Hailong Wu, 2021. "Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives–Part I: Torque Optimization for Healthy Mode," Energies, MDPI, vol. 14(24), pages 1-22, December.
    4. Sherif M. Dabour & Ahmed A. Aboushady & I. A. Gowaid & Mohamed. A. Elgenedy & Mohamed E. Farrag, 2022. "Performance Analysis and Evaluation of Multiphase Split-Source Inverters," Energies, MDPI, vol. 15(22), pages 1-20, November.
    5. Dominik Mamcarz & Paweł Albrechtowicz & Natalia Radwan-Pragłowska & Bartosz Rozegnał, 2020. "The Analysis of the Symmetrical Short-Circuit Currents in Backup Power Supply Systems with Low-Power Synchronous Generators," Energies, MDPI, vol. 13(17), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1960-:d:346223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.