Author
Listed:
- Eduardo Zafra
(Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain)
- Sergio Vazquez
(Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain)
- Hipolito Guzman Miranda
(Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain)
- Juan A. Sanchez
(Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain)
- Abraham Marquez
(Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain)
- Jose I. Leon
(Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 15001, China)
- Leopoldo G. Franquelo
(Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 15001, China)
Abstract
This work describes an efficient implementation in terms of computation time and resource usage in a Field-Programmable System-On-Chip (FPSoC) of a Finite Control Set Model Predictive Control (FCS-MPC) algorithm. As an example, the FCS-MPC implementation is used for the current reference tracking of a two-level three-phase power converter. The proposed solution is an enabler for using both complex control algorithms and digital controllers for high switching frequency semiconductor technologies. An original HW/SW (hardware and software) system architecture for an FPSoC is designed to take advantage of a modern operating system, while removing time uncertainty in real-time software tasks, and exploiting dedicated FPGA fabric for the most complex computations. In addition, two different architectures for the FPGA-implemented functionality are proposed and compared in order to study the area-speed trade-off. Experimental results show the feasibility of the proposed implementation, which achieves a speed hundreds of times faster than the conventional Digital Signal Processor (DSP)-based control platform.
Suggested Citation
Eduardo Zafra & Sergio Vazquez & Hipolito Guzman Miranda & Juan A. Sanchez & Abraham Marquez & Jose I. Leon & Leopoldo G. Franquelo, 2020.
"Efficient FPSoC Prototyping of FCS-MPC for Three-Phase Voltage Source Inverters,"
Energies, MDPI, vol. 13(5), pages 1-16, March.
Handle:
RePEc:gam:jeners:v:13:y:2020:i:5:p:1074-:d:326749
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Patryk Chaber & Andrzej Wojtulewicz, 2022.
"Flexible Matrix of Controllers for Real Time Parallel Control,"
Energies, MDPI, vol. 15(5), pages 1-23, March.
- Deepa Sankar & Lakshmi Syamala & Babu Chembathu Ayyappan & Mathew Kallarackal, 2021.
"FPGA-Based Cost-Effective and Resource Optimized Solution of Predictive Direct Current Control for Power Converters,"
Energies, MDPI, vol. 14(22), pages 1-26, November.
- Roberto O. Ramírez & Carlos R. Baier & Felipe Villarroel & Eduardo Espinosa & Mauricio Arevalo & Jose R. Espinoza, 2023.
"Reduction of DC Capacitor Size in Three-Phase Input/Single-Phase Output Power Cells of Multi-Cell Converters through Resonant and Predictive Control: A Characterization of Its Impact on the Operating ,"
Mathematics, MDPI, vol. 11(14), pages 1-19, July.
- David Sotelo & Antonio Favela-Contreras & Alfonso Avila & Arturo Pinto & Francisco Beltran-Carbajal & Carlos Sotelo, 2022.
"A New Software-Based Optimization Technique for Embedded Latency Improvement of a Constrained MIMO MPC,"
Mathematics, MDPI, vol. 10(15), pages 1-19, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1074-:d:326749. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.