IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6514-d459709.html
   My bibliography  Save this article

Towards Accurate Boundary Conditions for CFD Models of Synthetic Jets in Quiescent Flow

Author

Listed:
  • Andrea Matiz-Chicacausa

    (Mechanical Engineering Department, Universidad de Los Andes, 111711 Bogotá, Colombia)

  • Omar D. Lopez Mejia

    (Mechanical Engineering Department, Universidad de Los Andes, 111711 Bogotá, Colombia)

Abstract

In this paper, an accurate model to simulate the dynamics of the flow of synthetic jets (SJ) in quiescent flow is proposed. Computational modeling is an effective approach to understand the physics involved in these devices, commonly used in active flow control for several reasons. For example, SJ actuators are small; hence, it is difficult to experimentally measure pressure changes within the cavity. Although computational modeling is an advantageous approach, experiments are still the main technique employed in the study of SJs due to the lack of accurate computational models. The same aspect that represents an advantage over other techniques also represents a challenge for the computational simulations, such as capturing the unsteady phenomena, localized compressible effects, and boundary layer formation characteristic of this complex flow. One of the main challenges in the simulation of SJs is related to the fact that the spatial and temporal scales of the actuator and the corresponding flow control application differed in several orders of magnitude. Hence, in this study we focus on the use of Computational Fluid Dynamics (CFD) and Reduced Order Models (ROM) to develop an accurate yet low-cost model to capture the complexities of the flow of a SJ in quiescent flow. Numerical results show two possible paths for SJ modeling; (1) to obtain a boundary condition to predict velocity profile and jet formation from experimental data of diaphragm’s deformation; and, (2) to predict peak velocity at the jet’s outlet with a ROM approach and to use the physical details of the actuator to develop an accurate boundary condition for CFD. Both approaches are validated through experimental data available in the literature; good agreement between results from CFD, Lumped Element Model (LEM), and experimental data are achieved. Finally, it was concluded that the coupling between LEM and CFD is a novel and accurate approach, which improves CFD due to the advantages of LEM closing the gap between LEM’s lack of flow detail and CFD’s lack of geometrical/physical information of the actuator.

Suggested Citation

  • Andrea Matiz-Chicacausa & Omar D. Lopez Mejia, 2020. "Towards Accurate Boundary Conditions for CFD Models of Synthetic Jets in Quiescent Flow," Energies, MDPI, vol. 13(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6514-:d:459709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masoud Baghaei & Josep M. Bergada, 2019. "Analysis of the Forces Driving the Oscillations in 3D Fluidic Oscillators," Energies, MDPI, vol. 12(24), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6514-:d:459709. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.