IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5923-d444561.html
   My bibliography  Save this article

Optimization of Spatial Configuration of Multistrand Cable Lines

Author

Listed:
  • Artur Cywiński

    (Omega Projekt s.j., ul. Topolowa 1, 43-100 Tychy, Poland)

  • Krzysztof Chwastek

    (Faculty of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17, 42-201 Częstochowa, Poland)

  • Dariusz Kusiak

    (Faculty of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17, 42-201 Częstochowa, Poland)

  • Paweł Jabłoński

    (Faculty of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17, 42-201 Częstochowa, Poland)

Abstract

Skin and proximity effects have a considerable impact on current distribution in multistrand cable lines. Under unfavorable heat exchange conditions, some strands may be subject to excessive overheating, which may lead to serious malfunctions or even fires of the installation. The paper proposes a new criterion for a quick choice of spatial configurations, for which the effect might be minimized. A comprehensive analysis of literature cases is provided, including the recommendations of the U.S. National Code and the Canadian standard.

Suggested Citation

  • Artur Cywiński & Krzysztof Chwastek & Dariusz Kusiak & Paweł Jabłoński, 2020. "Optimization of Spatial Configuration of Multistrand Cable Lines," Energies, MDPI, vol. 13(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5923-:d:444561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. WenWei Zhu & YiFeng Zhao & ZhuoZhan Han & XiangBing Wang & YanFeng Wang & Gang Liu & Yue Xie & NingXi Zhu, 2019. "Thermal Effect of Different Laying Modes on Cross-Linked Polyethylene (XLPE) Insulation and a New Estimation on Cable Ampacity," Energies, MDPI, vol. 12(15), pages 1-22, August.
    2. Lan Xiong & Yonghui Chen & Yang Jiao & Jie Wang & Xiao Hu, 2019. "Study on the Effect of Cable Group Laying Mode on Temperature Field Distribution and Cable Ampacity," Energies, MDPI, vol. 12(17), pages 1-15, September.
    3. Paweł Jabłoński & Tomasz Szczegielniak & Dariusz Kusiak & Zygmunt Piątek, 2019. "Analytical–Numerical Solution for the Skin and Proximity Effects in Two Parallel Round Conductors," Energies, MDPI, vol. 12(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur Cywiński & Krzysztof Chwastek, 2021. "A Multiphysics Analysis of Coupled Electromagnetic-Thermal Phenomena in Cable Lines," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Lixiao Mu & Xiaobing Xu & Zhanran Xia & Bin Yang & Haoran Guo & Wenjun Zhou & Chengke Zhou, 2021. "Autonomous Analysis of Infrared Images for Condition Diagnosis of HV Cable Accessories," Energies, MDPI, vol. 14(14), pages 1-15, July.
    3. Marek Zaręba & Tomasz Szczegielniak & Paweł Jabłoński, 2023. "Influence of the Skin and Proximity Effects on the Thermal Field in a System of Two Parallel Round Conductors," Energies, MDPI, vol. 16(17), pages 1-20, September.
    4. Tomasz Szczegielniak & Dariusz Kusiak & Paweł Jabłoński, 2021. "Thermal Analysis of the Medium Voltage Cable," Energies, MDPI, vol. 14(14), pages 1-17, July.
    5. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Monika Rerak & Maciej Skaza, 2021. "The Power Losses in Cable Lines Supplying Nonlinear Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    6. Yuting Zhang & Fuhao Yu & Zhe Ma & Jian Li & Jiang Qian & Xiaojiao Liang & Jianzhong Zhang & Mingjiang Zhang, 2022. "Conductor Temperature Monitoring of High-Voltage Cables Based on Electromagnetic-Thermal Coupling Temperature Analysis," Energies, MDPI, vol. 15(2), pages 1-14, January.
    7. Zhihui Xu & Ming Yang & Huaqing Peng & Yifeng Zhao & Gang Liu, 2023. "Influence of Combined Electrothermal Aging on Dielectric and Thermal Properties of HVAC XLPE Cable," Energies, MDPI, vol. 16(8), pages 1-17, April.
    8. Jiahong He & Kang He & Longfei Cui, 2019. "Charge-Simulation-Based Electric Field Analysis and Electrical Tree Propagation Model with Defects in 10 kV XLPE Cable Joint," Energies, MDPI, vol. 12(23), pages 1-22, November.
    9. Antonino Imburgia & Pietro Romano & George Chen & Giuseppe Rizzo & Eleonora Riva Sanseverino & Fabio Viola & Guido Ala, 2019. "The Industrial Applicability of PEA Space Charge Measurements, for Performance Optimization of HVDC Power Cables," Energies, MDPI, vol. 12(21), pages 1-13, November.
    10. Paweł Jabłoński & Dariusz Kusiak & Tomasz Szczegielniak & Zygmunt Piątek, 2020. "The Proximity Effect in Twin Line with Round Conductors Placed in Conductive Medium," Energies, MDPI, vol. 13(22), pages 1-23, November.
    11. Min Ho Kim & Hyun Jeong Seo & Sang Kyu Lee & Min Chul Lee, 2021. "Influence of Thermal Aging on the Combustion Characteristics of Cables in Nuclear Power Plants," Energies, MDPI, vol. 14(7), pages 1-17, April.
    12. Paweł Jabłoński & Dariusz Kusiak & Tomasz Szczegielniak, 2020. "Analytical-Numerical Approach to the Skin and Proximity Effect in Lines with Round Parallel Wires," Energies, MDPI, vol. 13(24), pages 1-21, December.
    13. Stanislaw Czapp & Seweryn Szultka & Adam Tomaszewski, 2020. "Design of Power Cable Lines Partially Exposed to Direct Solar Radiation—Special Aspects," Energies, MDPI, vol. 13(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5923-:d:444561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.