IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5746-d439028.html
   My bibliography  Save this article

A Broadband Enhanced Structure-Preserving Reduced-Order Interconnect Macromodeling Method for Large-Scale Equation Sets of Transient Interconnect Circuit Problems

Author

Listed:
  • Ning Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Huifang Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Shiyou Yang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

In the transient analysis of an engineering power electronics device, the order of its equivalent circuit model is excessive large. To eliminate this issue, some model order reduction (MOR) methods are proposed in the literature. Compared to other MOR methods, the structure-preserving reduced-order interconnect macromodeling (SPRIM) based on Krylov subspaces will achieve a higher reduction radio and precision for large multi-port Resistor-Capacitor-Inductor (RCL) circuits. However, for very wide band frequency transients, the performance of a Krylov subspace-based MOR method is not satisfactory. Moreover, the selection of the expansion point in this method has not been comprehensively studied in the literature. From this point of view, a broadband enhanced structure-preserving reduced-order interconnect macromodeling (SPRIM) method is proposed to reduce the order of equation sets of a transient interconnect circuit model. In addition, a method is introduced to determine the optimal expansion point at each frequency in the proposed method. The proposed method is validated by the numerical results on a transient problem of an insulated-gate bipolar transistor (IGBT)-based inverter busbar under different exciting conditions.

Suggested Citation

  • Ning Wang & Huifang Wang & Shiyou Yang, 2020. "A Broadband Enhanced Structure-Preserving Reduced-Order Interconnect Macromodeling Method for Large-Scale Equation Sets of Transient Interconnect Circuit Problems," Energies, MDPI, vol. 13(21), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5746-:d:439028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5746/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5746-:d:439028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.