IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5644-d436214.html
   My bibliography  Save this article

Diagnosing Hydraulic Fracture Geometry, Complexity, and Fracture Wellbore Connectivity Using Chemical Tracer Flowback

Author

Listed:
  • Ashish Kumar

    (Department of Petroleum Engineering, The University of Texas at Austin, Austin, TX 78703, USA)

  • Mukul M. Sharma

    (Department of Petroleum Engineering, The University of Texas at Austin, Austin, TX 78703, USA)

Abstract

The productivity of a hydraulically fractured well depends on the fracture geometry and fracture–wellbore connectivity. Unlike other fracture diagnostics techniques, flowback tracer response will be dominated only by the fractures, which are open and connected to the wellbore. Single well chemical tracer field tests have been used for hydraulic fracture diagnostics to estimate the stagewise production contribution. In this study, a chemical tracer flowback analysis is presented to estimate the fraction of the created fracture area, which is open and connected to the wellbore. A geomechanics coupled fluid flow and tracer transport model is developed to analyze the impact of (a) fracture geometry, (b) fracture propagation and closure effects, and (c) fracture complexity on the tracer response curves. Tracer injection and flowback in a complex fracture network is modeled with the help of an effective model. Multiple peaks in the tracer response curves can be explained by the closure of activated natural fractures. Low tracer recovery typically observed in field tests can be explained by tracer retention due to fracture closure. In a complex fracture network, segment length and permeability are lumped to define an effective connected fracture length, a parameter that correlates with production. Neural network-based inverse modeling is performed to estimate effective connected fracture length using tracer data. A new method to analyze chemical tracer data which includes the effect of flow and geomechanics on tracer flowback is presented. The proposed approach can help in estimating the degree of connectivity between the wellbore and created hydraulic fractures.

Suggested Citation

  • Ashish Kumar & Mukul M. Sharma, 2020. "Diagnosing Hydraulic Fracture Geometry, Complexity, and Fracture Wellbore Connectivity Using Chemical Tracer Flowback," Energies, MDPI, vol. 13(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5644-:d:436214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5644/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5644-:d:436214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.