IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5576-d434492.html
   My bibliography  Save this article

Online Evaluation for the Accuracy of Electronic Voltage Transformer Based on Recursive Principal Components Analysis

Author

Listed:
  • Zhenhua Li

    (College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
    Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang 443002, China)

  • Yangang Zheng

    (College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China)

  • Ahmed Abu-Siada

    (Discipline of Electrical and Computer Engineering, Curtin University, Perth, WA 6000, Australia)

  • Mengyao Lu

    (College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China)

  • Hongbin Li

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yanchun Xu

    (College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China)

Abstract

The electronic voltage transformer (EVT) has received much attention with the recent global trend to establish smart grids and digital substations. One of the main issues of the EVT is the deterioration of its performance with long-term operation which affects the control and protection systems it is employed for and hence the overall reliability of the power grids. This calls for the essential need for a reliable technique to regularly assess the accuracy of operating EVT in real-time. Unfortunately, traditional calibration methods cannot detect the incipient EVT performance change in real-time. As such, this paper presents a new online method to evaluate the accuracy of the EVT. In this regard, the Q -statistic is calculated based on the recursive principal components analysis (RPCA) using the output data of EVT to map up the changes of metering error on the electric–physics relationship. By employing the output data of the EVT along with the power grid characteristics, the performance of the EVT is evaluated without the need for a standard transformer, as per the current industry practice. Results show that the proposed method can assess the EVT with a 0.2 accuracy class.

Suggested Citation

  • Zhenhua Li & Yangang Zheng & Ahmed Abu-Siada & Mengyao Lu & Hongbin Li & Yanchun Xu, 2020. "Online Evaluation for the Accuracy of Electronic Voltage Transformer Based on Recursive Principal Components Analysis," Energies, MDPI, vol. 13(21), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5576-:d:434492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun-Long Chen & Ren-Shuo Wan & Yi Guo & Nanming Chen & Wei-Jen Lee, 2017. "A Redundancy Mechanism Design for Hall-Based Electronic Current Transformers," Energies, MDPI, vol. 10(3), pages 1-14, March.
    2. Hongwen Liu & Ke Wang & Qing Yang & Lu Yin & Jisheng Huang, 2019. "On-Line Detection of Voltage Transformer Insulation Defects Using the Low-Frequency Oscillation Amplitude and Duration of a Zero Sequence Voltage," Energies, MDPI, vol. 12(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wael S. Hassanein & Marwa M. Ahmed & Mohamed I. Mosaad & A. Abu-Siada, 2021. "Estimation of Transmission Line Parameters Using Voltage-Current Measurements and Whale Optimization Algorithm," Energies, MDPI, vol. 14(11), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Kaczmarek & Artur Szczęsny & Ernest Stano, 2022. "Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics," Energies, MDPI, vol. 15(12), pages 1-10, June.
    2. Mengmeng Zhu & Hongda Tang & Zhaolei He & Yaohua Liao & Biao Tang & Qunqun Zhang & Hongchun Shu & Yaqi Deng & Fang Zeng & Pulin Cao, 2023. "Field Test Method and Equivalence Analysis of Delay Characteristics of DC Electronic Current Transformer," Energies, MDPI, vol. 16(15), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5576-:d:434492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.