IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5103-d422328.html
   My bibliography  Save this article

Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning

Author

Listed:
  • Zhilong He

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lantian Ji

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Ziwen Xing

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The friction of the orbiting scroll leads to large power consumption and low energy efficiency of the scroll compressor. The common methods to solve this problem are high cost and a complex process. Considering special structures and operating principles to apply the coating technology on the scroll compressor is a new subject. Given the material of the orbiting scroll being aluminum alloy, the unbalanced magnetron sputtering technology for the orbiting scroll of the scroll compressor was chosen and the Cr transition layer was coated to enhance the bonding strength. Moreover, we innovatively performed an experiment to verify the feasibility of unbalanced magnetron sputtering film coating technology for the diamond-like carbon film coated in the scroll compressor. This article elaborates the parameter test methods of the film properties before and after experiments and the experimental system components. The results showed that the diamond-like carbon film has low coefficient and high bonding strength, which renders it a good wear-reducing effect and an excellent self-lubricating property. Due to the thin film layer and high operating temperature, the thickness should be increased to raise the abrasion resistance. The refrigeration system with the scroll compressor coated with the diamond-like carbon film can satisfy the national standard conditions with low Vickers hardness. Its performance was improved at low speed. Therefore, the unbalanced magnetron sputtering with increased Cr bond layer is a feasible and appropriate technology for coating diamond-like carbon film.

Suggested Citation

  • Zhilong He & Lantian Ji & Ziwen Xing, 2020. "Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning," Energies, MDPI, vol. 13(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5103-:d:422328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5103/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Vasta, 2023. "Adsorption Air-Conditioning for Automotive Applications: A Critical Review," Energies, MDPI, vol. 16(14), pages 1-35, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5103-:d:422328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.