IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p4032-d394380.html
   My bibliography  Save this article

Design, Implementation, and Evaluation of Open Power Quality

Author

Listed:
  • Anthony J. Christe

    (Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA)

  • Sergey Negrashov

    (Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA)

  • Philip M. Johnson

    (Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA)

Abstract

Modern electrical grids are transitioning from a centralized generation architecture to an architecture with significant distributed, intermittent generation. This transition means that the formerly sharp distinction between energy producers (utility companies) and consumers (residences, businesses, etc.) are blurring: end-users both produce and consume energy, making energy management and public policy more complex. The goal of the Open Power Quality (OPQ) project is to design and implement a low cost, distributed power quality sensor network that provides useful new forms of information about modern electrical grids to producers, consumers, researchers, and policy makers. In 2019, we performed a pilot study involving the deployment of an OPQ sensor network at the University of Hawaii microgrid for three months. Results of the pilot study validate the ability of OPQ to collect accurate power quality data in a way that provides useful new insights into electrical grids.

Suggested Citation

  • Anthony J. Christe & Sergey Negrashov & Philip M. Johnson, 2020. "Design, Implementation, and Evaluation of Open Power Quality," Energies, MDPI, vol. 13(15), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4032-:d:394380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/4032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/4032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Viciana & Alfredo Alcayde & Francisco G. Montoya & Raul Baños & Francisco M. Arrabal-Campos & Antonio Zapata-Sierra & Francisco Manzano-Agugliaro, 2018. "OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    2. Rita Pinto & Sílvio Mariano & Maria Do Rosário Calado & José Felippe De Souza, 2016. "Impact of Rural Grid-Connected Photovoltaic Generation Systems on Power Quality," Energies, MDPI, vol. 9(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonghai Xu & Xingguan Fan & Siying Deng & Chunhao Niu, 2021. "A Voltage Sag Severity Evaluation Method for the System Side Which Considers the Influence of the Voltage Tolerance Curve and Sag Type," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    2. Junhui Li & Tianyang Zhang & Lei Qi & Gangui Yan, 2017. "A Method for the Realization of an Interruption Generator Based on Voltage Source Converters," Energies, MDPI, vol. 10(10), pages 1-19, October.
    3. Mingqi Wang & Xinqiao Zheng, 2017. "Sensitivity Analysis of Time Length of Photovoltaic Output Power to Capacity Configuration of Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-15, October.
    4. Su Su & Yong Hu & Tiantian Yang & Shidan Wang & Ziqi Liu & Xiangxiang Wei & Mingchao Xia & Yutaka Ota & Koji Yamashita, 2018. "Research on an Electric Vehicle Owner-Friendly Charging Strategy Using Photovoltaic Generation at Office Sites in Major Chinese Cities," Energies, MDPI, vol. 11(2), pages 1-19, February.
    5. Tobias Porsinger & Przemyslaw Janik & Zbigniew Leonowicz & Radomir Gono, 2017. "Modelling and Optimization in Microgrids," Energies, MDPI, vol. 10(4), pages 1-22, April.
    6. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    7. Mayurkumar Rajkumar Balwani & Karthik Thirumala & Vivek Mohan & Siqi Bu & Mini Shaji Thomas, 2021. "Development of a Smart Meter for Power Quality-Based Tariff Implementation in a Smart Grid," Energies, MDPI, vol. 14(19), pages 1-21, September.
    8. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "Analysis of Power Loss and Improved Simulation Method of a High Frequency Dual-Buck Full-Bridge Inverter," Energies, MDPI, vol. 10(3), pages 1-18, March.
    9. Giuseppe Barone & Giovanni Brusco & Daniele Menniti & Anna Pinnarelli & Gaetano Polizzi & Nicola Sorrentino & Pasquale Vizza & Alessandro Burgio, 2020. "How Smart Metering and Smart Charging may Help a Local Energy Community in Collective Self-Consumption in Presence of Electric Vehicles," Energies, MDPI, vol. 13(16), pages 1-18, August.
    10. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    11. Syed Muhammad Ahsan & Hassan Abbas Khan & Akhtar Hussain & Sarmad Tariq & Nauman Ahmad Zaffar, 2021. "Harmonic Analysis of Grid-Connected Solar PV Systems with Nonlinear Household Loads in Low-Voltage Distribution Networks," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    12. Hua Li & Che Wen & Kuei-Hsiang Chao & Ling-Ling Li, 2017. "Research on Inverter Integrated Reactive Power Control Strategy in the Grid-Connected PV Systems," Energies, MDPI, vol. 10(7), pages 1-21, July.
    13. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    14. Jun-Ho Huh & Jong Hyuk Park, 2020. "Decrepit Building Monitoring Solution for Zero Energy Building Management Using PLC and Android Application," Sustainability, MDPI, vol. 12(5), pages 1-26, March.
    15. José Varela-Aldás & Steven Silva & Guillermo Palacios-Navarro, 2022. "IoT-Based Alternating Current Electrical Parameters Monitoring System," Energies, MDPI, vol. 15(18), pages 1-23, September.
    16. Chih-Lung Shen & You-Sheng Shen & Cheng-Tao Tsai, 2017. "Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion," Energies, MDPI, vol. 10(3), pages 1-23, March.
    17. German Osma-Pinto & María García-Rodríguez & Jeisson Moreno-Vargas & Cesar Duarte-Gualdrón, 2020. "Impact Evaluation of Grid-Connected PV Systems on PQ Parameters by Comparative Analysis based on Inferential Statistics," Energies, MDPI, vol. 13(7), pages 1-19, April.
    18. Cheng-Biao Fu & An-Hong Tian & Yu-Chung Li & Her-Terng Yau, 2018. "Fractional Order Chaos Synchronization for Real-Time Intelligent Diagnosis of Islanding in Solar Power Grid Systems," Energies, MDPI, vol. 11(5), pages 1-14, May.
    19. Leocadio Hontoria & Catalina Rus-Casas & Juan Domingo Aguilar & Jesús C. Hernandez, 2019. "An Improved Method for Obtaining Solar Irradiation Data at Temporal High-Resolution," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    20. Alberto Ortega & Abel Miguel Cano-Delgado & Beatriz Prieto & Jesús González, 2023. "Design of a Standard and Programmatically Accessible Interface for Smart Meters to Allow Monitoring Automation of the Energy Consumed by the Execution of Computer Software," Sustainability, MDPI, vol. 15(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4032-:d:394380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.