IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3339-d378591.html
   My bibliography  Save this article

Electromagnetic and Calorimetric Validation of a Direct Oil Cooled Tooth Coil Winding PM Machine for Traction Application

Author

Listed:
  • Alessandro Acquaviva

    (Department of Electrical Engineering, Chalmers University of Technology, Hörsalsvägen 9-11, 41296 Gothenburg, Sweden)

  • Stefan Skoog

    (Department of Electrical Engineering, Chalmers University of Technology, Hörsalsvägen 9-11, 41296 Gothenburg, Sweden)

  • Emma Grunditz

    (Department of Electrical Engineering, Chalmers University of Technology, Hörsalsvägen 9-11, 41296 Gothenburg, Sweden)

  • Torbjörn Thiringer

    (Department of Electrical Engineering, Chalmers University of Technology, Hörsalsvägen 9-11, 41296 Gothenburg, Sweden)

Abstract

Tooth coil winding machines offer a low cost manufacturing process, high efficiency and high power density, making these attractive for traction applications. Using direct oil cooling in combination with tooth coil windings is an effective way of reaching higher power densities compared to an external cooling jacket. In this paper, the validation of the electromagnetic design for an automotive 600 V, 50 kW tooth coil winding traction machine is presented. The design process is a combination of an analytical sizing process and FEA optimization. It is shown that removing iron in the stator yoke for cooling channels does not affect electromagnetic performance significantly. In a previous publication, the machine is shown to be thermally capable of 25 A/mm 2 (105 Nm) continuously, and 35 A/mm 2 (140 Nm) during a 10 s peak with 6 l/min oil cooling. In this paper, inductance, torque and back EMF are measured and compared with FEA results showing very good agreement with the numerical design. Furthermore, the efficiency of the machine is validated by direct loss measurements, using a custom built calorimetric set-up in six operating points with an agreement within 0.9 units of percent between FEA and measured results.

Suggested Citation

  • Alessandro Acquaviva & Stefan Skoog & Emma Grunditz & Torbjörn Thiringer, 2020. "Electromagnetic and Calorimetric Validation of a Direct Oil Cooled Tooth Coil Winding PM Machine for Traction Application," Energies, MDPI, vol. 13(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3339-:d:378591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3339/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marko Merdžan, 2021. "Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method," Energies, MDPI, vol. 14(9), pages 1-35, May.
    2. Lukáš Veg & Jan Kaska & Martin Skalický & Roman Pechánek, 2021. "A Complex Study of Stator Tooth-Coil Winding Thermal Models for PM Synchronous Motors Used in Electric Vehicle Applications," Energies, MDPI, vol. 14(9), pages 1-16, April.
    3. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    4. Dmytro Konovalov & Ignat Tolstorebrov & Trygve Magne Eikevik & Halina Kobalava & Mykola Radchenko & Armin Hafner & Andrii Radchenko, 2023. "Recent Developments in Cooling Systems and Cooling Management for Electric Motors," Energies, MDPI, vol. 16(19), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3339-:d:378591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.