IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1628-d226888.html
   My bibliography  Save this article

Extraction of Boundary Condition Independent Dynamic Compact Thermal Models of LEDs—A Delphi4LED Methodology

Author

Listed:
  • Robin Bornoff

    (Mentor–A Siemens Business, 81 Bridge Rd, Molesey, East Molesey KT8 9HH, UK)

Abstract

Multi-domain electro-thermal-optical models of LEDs are required so that their thermal and optical behavior may be predicted during a luminaire design process. Today, no standardized approach exists for the extraction of such models. Therefore, models are not readily provided by LED suppliers to end-users. This results in designers of LED-based luminaires wasting time on LED characterization and ad hoc model extraction themselves. The Delphi4LED project aims to address these deficiencies by identifying standardizable methodologies to extract both electro-optical and thermal compact models of LEDs that together can be used in a multi-domain simulation context. This article describes a methodology to extract compact thermal models of LEDs that are dynamic, in that they accommodate transient thermal effects, and are boundary condition-independent, in that their accuracy is independent of their thermal operating environment. Such models are achieved by first proposing an equivalent thermal nodal network topology. The thermal resistances and capacitances of that network are identified by means of optimization so that the transient thermal response of the network matches that of either an equivalent calibrated 3D thermal model or a transient thermal measurement of a physical sample. The accuracy of the thermal network is then verified by comparing the thermal compact model with a 3D detailed model, which predicts thermal responses within a 3D system-level model.

Suggested Citation

  • Robin Bornoff, 2019. "Extraction of Boundary Condition Independent Dynamic Compact Thermal Models of LEDs—A Delphi4LED Methodology," Energies, MDPI, vol. 12(9), pages 1-10, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1628-:d:226888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1628/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. László Pohl & Gusztáv Hantos & János Hegedüs & Márton Németh & Zsolt Kohári & András Poppe, 2020. "Mixed Detailed and Compact Multi-Domain Modeling to Describe CoB LEDs," Energies, MDPI, vol. 13(16), pages 1-39, August.
    2. Genevieve Martin & Christophe Marty & Robin Bornoff & Andras Poppe & Grigory Onushkin & Marta Rencz & Joan Yu, 2019. "Luminaire Digital Design Flow with Multi-Domain Digital Twins of LEDs," Energies, MDPI, vol. 12(12), pages 1-28, June.
    3. Marc van der Schans & Joan Yu & Genevieve Martin, 2020. "Digital Luminaire Design Using LED Digital Twins—Accuracy and Reduced Computation Time: A Delphi4LED Methodology," Energies, MDPI, vol. 13(18), pages 1-19, September.
    4. András Poppe & Gábor Farkas & Lajos Gaál & Gusztáv Hantos & János Hegedüs & Márta Rencz, 2019. "Multi-Domain Modelling of LEDs for Supporting Virtual Prototyping of Luminaires," Energies, MDPI, vol. 12(10), pages 1-32, May.
    5. Hassan Khan & Adnan Khan & Maysaa Al-Qurashi & Rasool Shah & Dumitru Baleanu, 2020. "Modified Modelling for Heat Like Equations within Caputo Operator," Energies, MDPI, vol. 13(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1628-:d:226888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.