IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p943-d213065.html
   My bibliography  Save this article

Sliding Mode-Based Robust Control for Piezoelectric Actuators with Inverse Dynamics Estimation

Author

Listed:
  • Ander Chouza

    (System Engineering and Automation Department, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain)

  • Oscar Barambones

    (System Engineering and Automation Department, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain)

  • Isidro Calvo

    (System Engineering and Automation Department, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain)

  • Javier Velasco

    (Fundación Centro de Tecnologías Aeronáuticas (CTA), Juan de la Cierva 1, 01510 Miñano, Spain)

Abstract

This paper presents an improved control approach to be used for piezoelectric actuators. The proposed approach is based on sliding mode control with estimation perturbation (SMCPE) techniques. Also, a proportional–integral–derivative (PID)-type sliding surface is proposed for position tracking. The proposed approach has been studied and implemented in a commercial actuator. A model for the system is introduced, which includes the Bouc–Wen (BW) model to represent the hysteresis, and it is identified by means of the System Identification Toolbox in Matlab/Simulink. Experimental data show that the proposed controller has a better performance when compared to a proportional-integral (PI) controller or a conventional SMCPE in motion tracking. Furthermore, a sub-micrometer accuracy tracking can be obtained while compensating for the hysteresis effect.

Suggested Citation

  • Ander Chouza & Oscar Barambones & Isidro Calvo & Javier Velasco, 2019. "Sliding Mode-Based Robust Control for Piezoelectric Actuators with Inverse Dynamics Estimation," Energies, MDPI, vol. 12(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:943-:d:213065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oscar Barambones & Jose M. Gonzalez de Durana & Isidro Calvo, 2018. "Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System," Energies, MDPI, vol. 11(11), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohuan Lai & Haipeng Pan & Xinlong Zhao, 2019. "Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis," Energies, MDPI, vol. 12(24), pages 1-13, December.
    2. Cristian Napole & Oscar Barambones & Isidro Calvo & Javier Velasco, 2020. "Feedforward Compensation Analysis of Piezoelectric Actuators Using Artificial Neural Networks with Conventional PID Controller and Single-Neuron PID Based on Hebb Learning Rules," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. Dariusz Grzybek, 2023. "Experimental Analysis of Hysteresis in the Motion of a Two-Input Piezoelectric Bimorph Actuator," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    5. Cristian Napole & Oscar Barambones & Mohamed Derbeli & Isidro Calvo & Mohammed Yousri Silaa & Javier Velasco, 2021. "High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks," Mathematics, MDPI, vol. 9(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Eugen Rusu & Vengatesan Venugopal, 2019. "Special Issue “Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind”," Energies, MDPI, vol. 12(1), pages 1-4, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:943-:d:213065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.