IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p888-d211921.html
   My bibliography  Save this article

Numerical Investigation of the Impacts of Borehole Breakouts on Breakdown Pressure

Author

Listed:
  • Hua Zhang

    (Department of Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA)

  • Shunde Yin

    (Department of Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
    Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada)

  • Bernt S. Aadnoy

    (Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway)

Abstract

Borehole breakouts appear in drilling and production operations when rock subjected to in situ stress experiences shear failure. However, if a borehole breakout occurs, the boundary of the borehole is no longer circular and the stress distribution around it is different. So, the interpretation of the hydraulic fracturing test results based on the Kirsch solution may not be valid. Therefore, it is important to investigate the factors that may affect the correct interpretation of the breakdown pressure in a hydraulic fracturing test for a borehole that had breakouts. In this paper, two steps are taken to implement this investigation. First, sets of finite element modeling provide sets of data on borehole breakout measures. Second, for a given measure of borehole breakouts, according to the linear relation between the mud pressure and the stress on the borehole wall, the breakdown pressure considering the borehole breakouts is acquired by applying different mud pressure in the model. Results show the difference between the breakdown pressure of a circular borehole and that of borehole that had breakouts could be as large as 82% in some situations.

Suggested Citation

  • Hua Zhang & Shunde Yin & Bernt S. Aadnoy, 2019. "Numerical Investigation of the Impacts of Borehole Breakouts on Breakdown Pressure," Energies, MDPI, vol. 12(5), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:888-:d:211921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong Xue Han & Shunde Yin, 2018. "Determination of In-Situ Stress and Geomechanical Properties from Borehole Deformation," Energies, MDPI, vol. 11(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemyslaw Michal Wilczynski & Andrzej Domonik & Pawel Lukaszewski, 2021. "Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Wei Meng & Chuan He, 2020. "Back Analysis of the Initial Geo-Stress Field of Rock Masses in High Geo-Temperature and High Geo-Stress," Energies, MDPI, vol. 13(2), pages 1-20, January.
    3. Guangchao Zhang & You Li & Xiangjun Meng & Guangzhe Tao & Lei Wang & Hanqing Guo & Chuanqi Zhu & Hao Zuo & Zhi Qu, 2022. "Distribution Law of In Situ Stress and Its Engineering Application in Rock Burst Control in Juye Mining Area," Energies, MDPI, vol. 15(4), pages 1-17, February.
    4. Yutong Chai & Zhuoheng Chen & Shunde Yin, 2023. "A Preliminary Analysis of In-Situ Stress at Mount Meager by Displacement Discontinuity Method with Topography and Tectonics Considered," Energies, MDPI, vol. 16(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:888-:d:211921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.