IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p309-d199200.html
   My bibliography  Save this article

An Adaptive Frequency Phase-Locked Loop Based on a Third Order Generalized Integrator

Author

Listed:
  • Heng Du

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Qiuye Sun

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Qifu Cheng

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Dazhong Ma

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Xu Wang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

Abstract

In this paper, the basic principle and characteristics of a phase-locked loop (PLL) in a single phase grid-connected system are analyzed, and this paper introduces one type virtual orthogonal voltage vector method based on a third order generalized integrator (TOGI) to construct an alpha and beta static coordinate system. The TOGI structure can eliminate the DC offset in a voltage signal or zero offset in the sampling process, and ensure the amplitude of the virtual orthogonal signal is consistent. At the same time, the adaptive frequency estimation unit is introduced, which can effectively deal with the power grid voltage frequency changes and ensure the accuracy of PLL. MATLAB (R2012a, MathWorks, Natick, MA, USA) is used to simulate the variation of power grid voltage frequency, DC component injection, harmonics injection and other parameters, and the performance of PLL is adequately verified. In addition, a 5kW single-phase energy router experimental platform is built to verify the proposed PLL. The experimental results show that the PLL can well track the frequency change of the grid voltage and eliminate the DC offset, so as to achieve accurate phase tracking.

Suggested Citation

  • Heng Du & Qiuye Sun & Qifu Cheng & Dazhong Ma & Xu Wang, 2019. "An Adaptive Frequency Phase-Locked Loop Based on a Third Order Generalized Integrator," Energies, MDPI, vol. 12(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:309-:d:199200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/309/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad A. Bany Issa & Zaid A. Al Muala & Pastora M. Bello Bugallo, 2023. "Grid-Connected Renewable Energy Sources: A New Approach for Phase-Locked Loop with DC-Offset Removal," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Yaya Zhang & Jianzhong Zhu & Xueyu Dong & Pinchao Zhao & Peng Ge & Xiaolian Zhang, 2019. "A Control Strategy for Smooth Power Tracking of a Grid-Connected Virtual Synchronous Generator Based on Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 12(15), pages 1-24, August.
    3. Wenjie Ma & Sen Ouyang & Weidong Xu, 2019. "Improved Frequency Locked Loop Based Synchronization Method for Three-Phase Grid-Connected Inverter under Unbalanced and Distorted Grid Conditions," Energies, MDPI, vol. 12(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:309-:d:199200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.