IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4692-d296056.html
   My bibliography  Save this article

High-Efficiency Bidirectional LLC Resonant Converter with Primary Auxiliary Windings

Author

Listed:
  • Eun-Soo Kim

    (Department of Electrical and Electronics Engineering, JeonJu University, JeonJu 55069, Korea)

  • Jae-Sung Oh

    (Department of Electrical and Electronics Engineering, JeonJu University, JeonJu 55069, Korea)

Abstract

In this paper, high-efficiency bidirectional LLC resonant converters with primary auxiliary windings in transformers of resonant circuits are proposed. Even though resonant capacitors are used on the primary and secondary sides, the proposed converter can operate, regardless of the direction of the power flow, with the high gain characteristics of the LLC resonant converter without the mutual coupling of resonant capacitors. The operation principles and gain characteristics of the proposed bidirectional DC–DC converters are described in detail. A 3.3 kW prototyped bidirectional LLC resonant converter for interfacing 750 V DC buses was built and tested to verify the effectiveness and applicability of this proposed converter.

Suggested Citation

  • Eun-Soo Kim & Jae-Sung Oh, 2019. "High-Efficiency Bidirectional LLC Resonant Converter with Primary Auxiliary Windings," Energies, MDPI, vol. 12(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4692-:d:296056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4692/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christodoulos Katis & Athanasios Karlis, 2023. "Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues," Energies, MDPI, vol. 16(3), pages 1-34, January.
    2. Piotr Dworakowski & Andrzej Wilk & Michal Michna & Bruno Lefebvre & Fabien Sixdenier & Michel Mermet-Guyennet, 2020. "Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters," Energies, MDPI, vol. 13(6), pages 1-21, March.
    3. Hwa-Pyeong Park & Mina Kim & Jee-Hoon Jung, 2020. "A Comprehensive Overview in Control Algorithms for High Switching-Frequency LLC Resonant Converter," Energies, MDPI, vol. 13(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4692-:d:296056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.