IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3404-d263803.html
   My bibliography  Save this article

System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs)

Author

Listed:
  • Zoran Zbunjak

    (Croatian Transmission System Operator Ltd., Matulji, Croatia)

  • Igor Kuzle

    (Department of Energy and Power Systems, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

System integrity protection schemes (SIPS) are schemes that can, under potentially hazardous conditions, prevent a complete blackout of endangered parts of an electrical power system (EPS). The main objective of SIPS is to monitor the state of the power transmission network in real time and to react in emergency cases. This paper explores the use of phasor measurement unit (PMU) technology for the development of SIPS as a part of wide-area monitoring, protection, and control (WAMPAC) systems. A new SIPS development method is described using the experience from the real-time operation. The developed optimal bus-splitting scheme identifies potential actions that can eliminate or reduce power system overloads and protect the integrity of the power system. An optimal bus-splitting scheme based on a DC power flow model and PMU measurements is given as an example and is explained and tested on an IEEE 14 bus test system. Conducted simulations indicate that the described SIPS methodology supported by the PMU measurements can mitigate potential overloads of the observed network part.

Suggested Citation

  • Zoran Zbunjak & Igor Kuzle, 2019. "System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs)," Energies, MDPI, vol. 12(17), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3404-:d:263803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario Klarić & Igor Kuzle & Ninoslav Holjevac, 2018. "Wind Power Monitoring and Control Based on Synchrophasor Measurement Data Mining," Energies, MDPI, vol. 11(12), pages 1-23, December.
    2. Ziad M. Ali & Seyed-Ehsan Razavi & Mohammad Sadegh Javadi & Foad H. Gandoman & Shady H.E. Abdel Aleem, 2018. "Dual Enhancement of Power System Monitoring: Improved Probabilistic Multi-Stage PMU Placement with an Increased Search Space & Mathematical Linear Expansion to Consider Zero-Injection Bus," Energies, MDPI, vol. 11(6), pages 1-17, June.
    3. Mohammad Shoaib Shahriar & Ibrahim Omar Habiballah & Huthaifa Hussein, 2018. "Optimization of Phasor Measurement Unit (PMU) Placement in Supervisory Control and Data Acquisition (SCADA)-Based Power System for Better State-Estimation Performance," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Igor Ivanković & Igor Kuzle & Ninoslav Holjevac, 2017. "Wide Area Information-Based Transmission System Centralized Out-of-Step Protection Scheme," Energies, MDPI, vol. 10(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Gil & Renata Modzelewska & Szczepan Moskwa & Agnieszka Siluszyk & Marek Siluszyk & Anna Wawrzynczak & Mariusz Pozoga & Sebastian Domijanski, 2020. "Transmission Lines in Poland and Space Weather Effects," Energies, MDPI, vol. 13(9), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. István Táczi & Bálint Sinkovics & István Vokony & Bálint Hartmann, 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review," Energies, MDPI, vol. 14(17), pages 1-17, August.
    2. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Igor Ivanković & Igor Kuzle & Ninoslav Holjevac, 2018. "Algorithm for Fast and Efficient Detection and Reaction to Angle Instability Conditions Using Phasor Measurement Unit Data," Energies, MDPI, vol. 11(3), pages 1-21, March.
    4. Ziad M. Ali & Seyed-Ehsan Razavi & Mohammad Sadegh Javadi & Foad H. Gandoman & Shady H.E. Abdel Aleem, 2018. "Dual Enhancement of Power System Monitoring: Improved Probabilistic Multi-Stage PMU Placement with an Increased Search Space & Mathematical Linear Expansion to Consider Zero-Injection Bus," Energies, MDPI, vol. 11(6), pages 1-17, June.
    5. Rafael Cisneros-Magaña & Aurelio Medina & Olimpo Anaya-Lara, 2018. "Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components," Energies, MDPI, vol. 11(6), pages 1-20, June.
    6. Zhenxing Li & Yang Gong & Lu Wang & Hong Tan & Prominent Lovet Kativu & Pengfei Wang, 2018. "A Regional Protection Partition Strategy Considering Communication Constraints and Its Implementation Techniques," Energies, MDPI, vol. 11(10), pages 1-15, September.
    7. Nikolaos P. Theodorakatos & Miltiadis Lytras & Rohit Babu, 2020. "Towards Smart Energy Grids: A Box-Constrained Nonlinear Underdetermined Model for Power System Observability Using Recursive Quadratic Programming," Energies, MDPI, vol. 13(7), pages 1-17, April.
    8. Goran Petrovic & Juraj Alojzije Bosnic & Goran Majic & Marin Despalatovic, 2019. "A Design of PWM Controlled Calibrator of Non-Sinusoidal Voltage Waveforms," Energies, MDPI, vol. 12(10), pages 1-14, May.
    9. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    10. Andrey Pazderin & Inga Zicmane & Mihail Senyuk & Pavel Gubin & Ilya Polyakov & Nikita Mukhlynin & Murodbek Safaraliev & Firuz Kamalov, 2023. "Directions of Application of Phasor Measurement Units for Control and Monitoring of Modern Power Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-43, August.
    11. Gyul Lee & Do-In Kim & Seon Hyeog Kim & Yong-June Shin, 2019. "Multiscale PMU Data Compression via Density-Based WAMS Clustering Analysis," Energies, MDPI, vol. 12(4), pages 1-17, February.
    12. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    13. Mario Klarić & Igor Kuzle & Ninoslav Holjevac, 2018. "Wind Power Monitoring and Control Based on Synchrophasor Measurement Data Mining," Energies, MDPI, vol. 11(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3404-:d:263803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.