IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2735-d249163.html
   My bibliography  Save this article

Experimental and Numerical Study of the Flow and Heat Transfer in a Bubbly Turbulent Flow in a Pipe with Sudden Expansion

Author

Listed:
  • Pavel Lobanov

    (Laboratory of Problems of Heat and Mass Transfer, Kutateladze Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, Acad. Lavrent’ev Avenue 1, 630090 Novosibirsk, Russia)

  • Maksim Pakhomov

    (Laboratory of Thermal and Gas Dynamics, Kutateladze Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, Acad. Lavrent’ev Avenue 1, 630090 Novosibirsk, Russia)

  • Viktor Terekhov

    (Laboratory of Thermal and Gas Dynamics, Kutateladze Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, Acad. Lavrent’ev Avenue 1, 630090 Novosibirsk, Russia)

Abstract

The flow patterns and heat transfer of a downstream bubbly flow in a sudden pipe expansion are experimentally and numerically studied. Measurements of the bubble size were performed using shadow photography. Fluid phase velocities were measured using a PIV system. The numerical model was employed the Eulerian approach. The set of RANS equations was used for modelling two-phase bubbly flows. The turbulence of the carrier liquid phase was predicted using the Reynolds stress model. The peak of axial and radial fluctuations of the carrier fluid (liquid) velocity in the bubbly flow is observed in the shear layer. The addition of air bubbles resulted in a significant increase in the heat transfer rate (up to 300%). The main enhancement in heat transfer is observed after the point of flow reattachment.

Suggested Citation

  • Pavel Lobanov & Maksim Pakhomov & Viktor Terekhov, 2019. "Experimental and Numerical Study of the Flow and Heat Transfer in a Bubbly Turbulent Flow in a Pipe with Sudden Expansion," Energies, MDPI, vol. 12(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2735-:d:249163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tenglong Cong & Xiang Zhang, 2018. "Numerical Study of Bubble Coalescence and Breakup in the Reactor Fuel Channel with a Vaned Grid," Energies, MDPI, vol. 11(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Starace & Lorenzo Carrieri & Gianpiero Colangelo, 2020. "Semi-Analytical Model for Heat and Mass Transfer Evaluation of Vapor Bubbling," Energies, MDPI, vol. 13(5), pages 1-17, March.
    2. Mikhail A. Sheremet, 2021. "Numerical Simulation of Convective-Radiative Heat Transfer," Energies, MDPI, vol. 14(17), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredo Iranzo & Francisco Javier Pino & José Guerra & Francisco Bernal & Nicasio García, 2018. "Cooling Process Analysis of a 5-Drum System for Radioactive Waste Processing," Energies, MDPI, vol. 11(10), pages 1-25, October.
    2. Fangyang Yuan & Zhengwei Cui & Jianzhong Lin, 2020. "Experimental and Numerical Study on Flow Resistance and Bubble Transport in a Helical Static Mixer," Energies, MDPI, vol. 13(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2735-:d:249163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.