IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2345-d241041.html
   My bibliography  Save this article

DC Flashover Dynamic Model of Post Insulator under Non-Uniform Pollution between Windward and Leeward Sides

Author

Listed:
  • Zhijin Zhang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Shenghuan Yang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Xingliang Jiang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Xinhan Qiao

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Yingzhu Xiang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Dongdong Zhang

    (Nanjing Institute of Technology, Nanjing 210000, China)

Abstract

Experience shows that under unidirectional wind or certain terrain, the surface of post insulators is non-uniformly polluted between windward and leeward sides, which affects the flashover characteristics. In this paper, a formulation of residual pollution layer resistance was proposed under this non-uniformity and a typical post insulator was taken as an example to analyze and calculate its residual resistance. The theoretical resistance was verified by numerical simulations using COMSOL Multiphysics. The proposed resistance formulation was then implemented in a DC flashover dynamic model to determine the flashover voltage ( U cal ), which was validated by artificial flashover tests. Then the factors affecting DC flashover voltage were analyzed. Research results indicate that: the residual resistance formulation agrees well with simulation results, especially when the arc length exceeds 70% of the leakage distance. The good concordance between theoretical and experimental flashover voltages with most relative error within ±10%, validates the flashover model and its residual resistance formulation. U cal gets impaired under this non-uniformity. The degree of reduction is related to salt deposit density ratio ( m ) of windward to leeward side and leeward side area proportion ( k ).

Suggested Citation

  • Zhijin Zhang & Shenghuan Yang & Xingliang Jiang & Xinhan Qiao & Yingzhu Xiang & Dongdong Zhang, 2019. "DC Flashover Dynamic Model of Post Insulator under Non-Uniform Pollution between Windward and Leeward Sides," Energies, MDPI, vol. 12(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2345-:d:241041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2345/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Zhang & Shuailin Chen, 2020. "Intelligent Recognition of Insulator Contamination Grade Based on the Deep Learning of Ultraviolet Discharge Image Information," Energies, MDPI, vol. 13(19), pages 1-16, October.
    2. Guolin Yang & Yi Liao & Xingliang Jiang & Xiangshuai Han & Jiangyi Ding & Yu Chen & Xingbo Han & Zhijin Zhang, 2022. "Research on Value-Seeking Calculation Method of Icing Environmental Parameters Based on Four Rotating Cylinders Array," Energies, MDPI, vol. 15(19), pages 1-17, October.
    3. Yanpeng Hao & Yifan Liao & Zhiqiang Kuang & Yijie Sun & Gaofeng Shang & Weixun Zhang & Guiyun Mao & Lin Yang & Fuzeng Zhang & Licheng Li, 2020. "Experimental Investigation on Influence of Shed Parameters on Surface Rainwater Characteristics of Large-Diameter Composite Post Insulators under Rain Conditions," Energies, MDPI, vol. 13(19), pages 1-16, September.
    4. Da Zhang & Fancui Meng, 2019. "Research on the Interrelation between Temperature Distribution and Dry Band on Wet Contaminated Insulators," Energies, MDPI, vol. 12(22), pages 1-14, November.
    5. Dongdong Zhang & Hong Xu & Jin Liu & Chengshun Yang & Xiaoning Huang & Zhijin Zhang & Xingliang Jiang, 2021. "Research on the Non-Contact Pollution Monitoring Method of Composite Insulator Based on Space Electric Field," Energies, MDPI, vol. 14(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2345-:d:241041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.