IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2198-d238473.html
   My bibliography  Save this article

Sealing Performance Analysis of an End Fitting for Marine Unbonded Flexible Pipes Based on Hydraulic-Thermal Finite Element Modeling

Author

Listed:
  • Liping Tang

    (School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Wei He

    (School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Xiaohua Zhu

    (School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Yunlai Zhou

    (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 00852, SAR, China)

Abstract

End fittings are essential components in marine flexible pipe systems, performing the two main functions of connecting and sealing. To investigate the sealing principle and the influence of the temperature on the sealing performance, a hydraulic-thermal finite element (FE) model for the end fitting sealing structure was developed. The sealing mechanism of the end fitting was revealed by simulating the sealing behavior under the pressure penetration criteria. To investigate the effect of temperature, the sealing behavior of the sealing ring under different temperature fields was analyzed and discussed. The results showed that the contact pressure of path 1 (i.e., metal-to-polymer seal) was 31.7 MPa, which was much lower than that of path 2 (metal-to-metal seal) at 195.6 MPa. It was indicated that the sealing capacities were different for the two leak paths, and that the sealing performance of the metal-to-polymer interface had more complicated characteristics. Results also showed that the finite element analysis can be used in conjunction with pressure penetration criteria to evaluate the sealing capacity. According to the model, when the fluid pressures are 20 and 30 MPa, no leakage occurs in the sealing structure, while the sealing structure fails at the fluid pressure of 40 MPa. In addition, it was shown that temperature plays a significant role in the thermal deformation of a sealing structure under a temperature field and that an appropriately high temperature can increase the sealing capacity.

Suggested Citation

  • Liping Tang & Wei He & Xiaohua Zhu & Yunlai Zhou, 2019. "Sealing Performance Analysis of an End Fitting for Marine Unbonded Flexible Pipes Based on Hydraulic-Thermal Finite Element Modeling," Energies, MDPI, vol. 12(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2198-:d:238473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhang & Yunfei Huang & Ying Wu, 2018. "Springback Coefficient Research of API X60 Pipe with Dent Defect," Energies, MDPI, vol. 11(11), pages 1-17, November.
    2. Jinming Zhang & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Gang Li & Kefeng Yan & Tao Lv, 2018. "Gas-Lifting Characteristics of Methane-Water Mixture and Its Potential Application for Self-Eruption Production of Marine Natural Gas Hydrates," Energies, MDPI, vol. 11(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Wei & Wantong Sun & Yingfeng Meng & Jinzhou Zhao & Bjørn Kvamme & Shouwei Zhou & Liehui Zhang & Qingping Li & Yao Zhang & Lin Jiang & Haitao Li & Jun Pei, 2020. "Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines," Energies, MDPI, vol. 13(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2198-:d:238473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.