IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p742-d137935.html
   My bibliography  Save this article

Movement Boundary Shape of Overburden Strata and Its Influencing Factors

Author

Listed:
  • Changchun He

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

  • Jialin Xu

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

  • Fei Wang

    (Department of Mining Engineering, Colorado School of Mines, 1600 Illinois street, Golden, CO 80401, USA)

  • Feng Wang

    (College of Mining and Safety Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Provence and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

Strata movement boundary is not only a parameter for the prediction of overburden strata movement and deformation but also a key index of setting shafts, roadways and protective coal pillars. Based on physical and mechanical properties of rock mass, the overburden strata are divided into bedrock and unconsolidated stratum. By means of theoretical analysis, physical simulation and numerical simulation, this paper studies the movement boundary shapes of bedrock and unconsolidated stratum, builds fitting equations of movement boundary of the two, analyzes the influence of key strata (KS) on the shape of strata movement boundary, and determines the principle of setting protective coal pillars. The results show that the movement boundaries of bedrock and unconsolidated strata are located at the outside of coal mining boundary. They are concave-upward power function curves that cannot be merged into a smooth one due to their different mechanisms of movement and deformation. The movement boundary of bedrock can approximate a straight line when lithology of the overburden is relatively uniform with thin strata in different positions; the surface movement boundary extends when the overburden has thick and stiff KS that are common in deeply buried coal seam. Therefore, the width of protective coal pillar is small if the movement boundary is regarded as a straight line. According to the curve movement boundary, the protective coal pillar for the passenger roadway of Panel 31010 of Pingdingshan No.1 mine is at least 99.4 m in width, larger than the designed one, which is the actual reason for its deformation and breakage.

Suggested Citation

  • Changchun He & Jialin Xu & Fei Wang & Feng Wang, 2018. "Movement Boundary Shape of Overburden Strata and Its Influencing Factors," Energies, MDPI, vol. 11(4), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:742-:d:137935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/742/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiyong Lu & Changchun He & Xin Zhang, 2020. "Height of overburden fracture based on key strata theory in longwall face," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    2. Piotr Strzałkowski & Katarzyna Szafulera, 2020. "Occurrence of Linear Discontinuous Deformations in Upper Silesia (Poland) in Conditions of Intensive Mining Extraction—Case Study," Energies, MDPI, vol. 13(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:742-:d:137935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.