IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p632-d135953.html
   My bibliography  Save this article

Voltage Distribution and Flashover Performance of 220 kV Composite Insulators under Different Icing Conditions

Author

Listed:
  • Jiazheng Lu

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission & Distribution Equipment, State Grid Hunan Electric Power Corporation Disaster Prevention & Reduction Center, Changsha 410007, China)

  • Pengkang Xie

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission & Distribution Equipment, State Grid Hunan Electric Power Corporation Disaster Prevention & Reduction Center, Changsha 410007, China)

  • Zhenglong Jiang

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission & Distribution Equipment, State Grid Hunan Electric Power Corporation Disaster Prevention & Reduction Center, Changsha 410007, China)

  • Zhen Fang

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission & Distribution Equipment, State Grid Hunan Electric Power Corporation Disaster Prevention & Reduction Center, Changsha 410007, China)

  • Wei Wu

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission & Distribution Equipment, State Grid Hunan Electric Power Corporation Disaster Prevention & Reduction Center, Changsha 410007, China)

Abstract

Composite insulators are widely used in modern power systems to provide electrical insulation and mechanical support for transmission lines and substations. However, the insulation strength will decrease greatly under the combined conditions of ice-covering and contamination, and icing flashovers may take place under these serious conditions. In this paper, AC flashover tests of different artificially ice-covered 220 kV composite insulators were carried out in a multi-function artificial climate chamber under energized ice accumulation conditions. The test results indicate that, with the increasing of ice thickness, the flashover voltages decrease and tend to saturation. The icing flashover voltages can be increased by adding booster sheds, but excessive booster sheds can lead to lower flashover voltages under heavy icing conditions. The voltage distributions of the iced insulators were measured using experimental methods. The results show that, the air gaps withstand most of the applied voltage. The zinc oxide (ZnO) resistors that are contained in the insulators can influence the voltage distributions of the iced insulators, but have little affect on the icing flashover voltages. The work done in this paper can provide reference for the design and type selection of outdoor composite insulators in cold climate regions.

Suggested Citation

  • Jiazheng Lu & Pengkang Xie & Zhenglong Jiang & Zhen Fang & Wei Wu, 2018. "Voltage Distribution and Flashover Performance of 220 kV Composite Insulators under Different Icing Conditions," Energies, MDPI, vol. 11(3), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:632-:d:135953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang Ren & Hongshun Liu & Jianchun Wei & Qingquan Li, 2017. "Natural Contamination and Surface Flashover on Silicone Rubber Surface under Haze–Fog Environment," Energies, MDPI, vol. 10(10), pages 1-18, October.
    2. Jianlin Hu & Caixin Sun & Xingliang Jiang & Qing Yang & Zhijin Zhang & Lichun Shu, 2011. "Model for Predicting DC Flashover Voltage of Pre-Contaminated and Ice-Covered Long Insulator Strings under Low Air Pressure," Energies, MDPI, vol. 4(4), pages 1-16, April.
    3. Yukun Lv & Weiping Zhao & Jingang Li & Yazhao Zhang, 2017. "Simulation of Contamination Deposition on Typical Shed Porcelain Insulators," Energies, MDPI, vol. 10(7), pages 1-13, July.
    4. Qing Yang & Rui Wang & Wenxia Sima & Chilong Jiang & Xing Lan & Markus Zahn, 2012. "Electrical Circuit Flashover Model of Polluted Insulators under AC Voltage Based on the Arc Root Voltage Gradient Criterion," Energies, MDPI, vol. 5(3), pages 1-18, March.
    5. Jianlin Hu & Xingliang Jiang & Fanghui Yin & Zhijin Zhang, 2015. "DC Flashover Performance of Ice-Covered Composite Insulators with Parallel Air Gaps," Energies, MDPI, vol. 8(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Wen & Yifei Chen & Jianrong Wu & Xianyin Mao & Huan Huang & Lin Yang, 2022. "Research on Risk Assessment and Suppression Measures for Ice-Shedding on 500 kV Compact Overhead Lines," Energies, MDPI, vol. 15(21), pages 1-14, October.
    2. Jiazheng Lu & Pengkang Xie & Jianping Hu & Zhenglong Jiang & Zhen Fang, 2018. "AC Flashover Performance of 10 kV Rod-Plane Air-Gapped Arresters under Rain Conditions," Energies, MDPI, vol. 11(6), pages 1-11, June.
    3. Guolin Yang & Yi Liao & Xingliang Jiang & Xiangshuai Han & Jiangyi Ding & Yu Chen & Xingbo Han & Zhijin Zhang, 2022. "Research on Value-Seeking Calculation Method of Icing Environmental Parameters Based on Four Rotating Cylinders Array," Energies, MDPI, vol. 15(19), pages 1-17, October.
    4. Xiangxin Li & Ming Zhou & Yazhou Luo & Gang Wang & Lin Jia, 2018. "Effect of Ice Shedding on Discharge Characteristics of an Ice-Covered Insulator String during AC Flashover," Energies, MDPI, vol. 11(9), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Wang & Junhua Wang & Jianwei Shao & Jiangui Li, 2017. "Image Recognition of Icing Thickness on Power Transmission Lines Based on a Least Squares Hough Transform," Energies, MDPI, vol. 10(4), pages 1-15, March.
    2. Xingliang Jiang & Quanlin Wang & Zhijing Zhang & Jianlin Hu & Qin Hu & Chengzhi Zhu, 2017. "Ion Migration in the Process of Water Freezing under Alternating Electric Field and Its Impact on Insulator Flashover," Energies, MDPI, vol. 10(1), pages 1-17, January.
    3. Xingbo Han & Xingliang Jiang & Zhongyi Yang & Conglai Bi, 2018. "A Predictive Model for Dry-Growth Icing on Composite Insulators under Natural Conditions," Energies, MDPI, vol. 11(6), pages 1-16, May.
    4. Xiangxin Li & Ming Zhou & Yazhou Luo & Gang Wang & Lin Jia, 2018. "Effect of Ice Shedding on Discharge Characteristics of an Ice-Covered Insulator String during AC Flashover," Energies, MDPI, vol. 11(9), pages 1-11, September.
    5. Hongyue Yang & Ji Qian & Ming Yang & Chunxi Li & Hengfan Li & Songling Wang, 2020. "Study on the Effects of Microstructural Surfaces on the Attachment of Moving Microbes," Energies, MDPI, vol. 13(17), pages 1-13, August.
    6. Shabana Khatoon & Asfar Ali Khan & Mohd Tariq & Basem Alamri & Lucian Mihet-Popa, 2022. "Flashover Voltage Prediction Models under Agricultural and Biological Contaminant Conditions on Insulators," Energies, MDPI, vol. 15(4), pages 1-14, February.
    7. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    8. Jordi-Roger Riba & William Larzelere & Johannes Rickmann, 2018. "Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review," Energies, MDPI, vol. 11(7), pages 1-14, July.
    9. Da Zhang & Fancui Meng, 2019. "Research on the Interrelation between Temperature Distribution and Dry Band on Wet Contaminated Insulators," Energies, MDPI, vol. 12(22), pages 1-14, November.
    10. Guangquan Zhang & Xueqin Zhang & Bo Wang & Yujun Guo & Guoqiang Gao & Guangning Wu, 2022. "Study on the Discharge Characteristics along the Surface and Charge Movement Characteristics of Insulating Media in an Airflow Environment," Energies, MDPI, vol. 15(10), pages 1-19, May.
    11. Marc-Alain Andoh & Kone Gbah & Christophe Volat, 2022. "Development of a Simple Experimental Setup for the Study of the Formation of Dry Bands on Composite Insulators," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:632-:d:135953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.