IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3244-d184689.html
   My bibliography  Save this article

Capacitors Voltage Switching Ripple in Three-Phase Three-Level Neutral Point Clamped Inverters with Self-Balancing Carrier-Based Modulation

Author

Listed:
  • Manel Hammami

    (Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Gabriele Rizzoli

    (Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Riccardo Mandrioli

    (Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Gabriele Grandi

    (Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy)

Abstract

This paper provides a comprehensive analysis of the capacitors voltage switching ripple for three-phase three-level neutral point clamped (NPC) inverter topologies. The voltage ripple amplitudes of the two dc-link capacitors are theoretically estimated as a function of both amplitude and phase angle of output current and the inverter modulation index. In particular, peak-to-peak distribution and maximum amplitudes of the capacitor voltage switching ripple over the fundamental period are obtained. A comparison is made considering different carrier-based pulse-width modulations in the case of almost all sinusoidal load currents, representing either grid connection or passive load with a negligible current ripple. Based on the voltage switching ripple requirements of capacitors, a simple and effective original equation for a preliminary sizing of the capacitors has been proposed. Numerical simulations and experimental tests have been carried out in order to verify the analytical developments.

Suggested Citation

  • Manel Hammami & Gabriele Rizzoli & Riccardo Mandrioli & Gabriele Grandi, 2018. "Capacitors Voltage Switching Ripple in Three-Phase Three-Level Neutral Point Clamped Inverters with Self-Balancing Carrier-Based Modulation," Energies, MDPI, vol. 11(12), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3244-:d:184689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marija Vujacic & Manel Hammami & Milan Srndovic & Gabriele Grandi, 2017. "Theoretical and Experimental Investigation of Switching Ripple in the DC-Link Voltage of Single-Phase H-Bridge PWM Inverters," Energies, MDPI, vol. 10(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serhii Stepenko & Oleksandr Husev & Dmitri Vinnikov & Carlos Roncero-Clemente & Sergio Pires Pimentel & Elena Santasheva, 2019. "Experimental Comparison of Two-Level Full-SiC and Three-Level Si–SiC Quasi-Z-Source Inverters for PV Applications," Energies, MDPI, vol. 12(13), pages 1-17, June.
    2. Riccardo Mandrioli & Aleksandr Viatkin & Manel Hammami & Mattia Ricco & Gabriele Grandi, 2021. "Prediction of DC-Link Voltage Switching Ripple in Three-Phase Four-Leg PWM Inverters," Energies, MDPI, vol. 14(5), pages 1-26, March.
    3. Antonio Ventosa-Cutillas & Pablo Montero-Robina & Francisco Umbría & Federico Cuesta & Francisco Gordillo, 2019. "Integrated Control and Modulation for Three-Level NPC Rectifiers," Energies, MDPI, vol. 12(9), pages 1-15, April.
    4. Guo Chen & Chunyang Gong & Jun Bao & Lihua Zhu & Zhixin Wang, 2023. "Compensation-Voltage-Injection-Based Neutral-Point Voltage Fluctuation Suppression Method for NPC Converters," Energies, MDPI, vol. 16(11), pages 1-20, May.
    5. Guozheng Zhang & Bingxu Wei & Xin Gu & Xinmin Li & Zhanqing Zhou & Wei Chen, 2019. "Sector Subdivision Based SVPWM Strategy of Neutral-Point-Clamped Three-Level Inverter for Current Ripple Reduction," Energies, MDPI, vol. 12(14), pages 1-16, July.
    6. Maosong Zhang & Ying Cui & Qunjing Wang & Jun Tao & Xiuqin Wang & Hongsheng Zhao & Guoli Li, 2019. "A Study on Neutral-Point Potential in Three-Level NPC Converters," Energies, MDPI, vol. 12(17), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Li & Lei Yang & Tao Wang, 2022. "Analysis of the DC-Link Voltage Ripple for the Three-Phase Voltage Source Converter under Nonlinear Output Current," Energies, MDPI, vol. 15(8), pages 1-15, April.
    2. Manel Hammami & Riccardo Mandrioli & Aleksandr Viatkin & Mattia Ricco & Gabriele Grandi, 2020. "Analysis of Input Voltage Switching Ripple in Three-Phase Four-Wire Split Capacitor PWM Inverters," Energies, MDPI, vol. 13(19), pages 1-21, September.
    3. Manel Hammami & Gabriele Grandi, 2017. "A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm," Energies, MDPI, vol. 10(12), pages 1-19, December.
    4. Riccardo Mandrioli & Aleksandr Viatkin & Manel Hammami & Mattia Ricco & Gabriele Grandi, 2021. "Prediction of DC-Link Voltage Switching Ripple in Three-Phase Four-Leg PWM Inverters," Energies, MDPI, vol. 14(5), pages 1-26, March.
    5. Marija Vujacic & Manel Hammami & Milan Srndovic & Gabriele Grandi, 2018. "Analysis of dc-Link Voltage Switching Ripple in Three-Phase PWM Inverters," Energies, MDPI, vol. 11(2), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3244-:d:184689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.