Author
Listed:
- Li You
(National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)
- Wenjin Wang
(National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)
- Xiqi Gao
(National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)
Abstract
In this paper, we investigate energy-efficient multicast precoding for massive multiple-input multiple-output (MIMO) transmission. In contrast with most previous work, where instantaneous channel state information (CSI) is exploited to facilitate energy-efficient wireless transmission design, we assume that the base station can only exploit statistical CSI of the user terminals for downlink multicast precoding. First, in terms of maximizing the system energy efficiency, the eigenvectors of the optimal energy-efficient multicast transmit covariance matrix are identified in closed form, which indicates that optimal energy-efficient multicast precoding should be performed in the beam domain in massive MIMO. Then, the large-dimensional matrix-valued precoding design is simplified into an energy-efficient power allocation problem in the beam domain with significantly reduced optimization variables. Using Dinkelbach’s transform, we further propose a sequential beam domain power allocation algorithm which is guaranteed to converge to the global optimum. In addition, we use the large-dimensional random matrix theory to derive the deterministic equivalent of the objective to reduce the computational complexity involved in sample averaging. We present numerical results to illustrate the near-optimal performance of our proposed energy-efficient multicast precoding for massive MIMO.
Suggested Citation
Li You & Wenjin Wang & Xiqi Gao, 2018.
"Energy-Efficient Multicast Precoding for Massive MIMO Transmission with Statistical CSI,"
Energies, MDPI, vol. 11(11), pages 1-11, November.
Handle:
RePEc:gam:jeners:v:11:y:2018:i:11:p:3175-:d:183197
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3175-:d:183197. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.