IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p901-d103305.html
   My bibliography  Save this article

Study on the Gas-Insulated Line Equivalent Model and Simplified Model

Author

Listed:
  • Botong Li

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Tianfeng Gu

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Bin Li

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Yunke Zhang

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

The gas-insulated line (GIL) is one technical solution to allow the transmission of electricity underground at a high voltage level, yet its equivalent model is quite complicated. Based on an examination of the geometrical structure of the GIL and the way the metallic enclosure is grounded, this paper analyzed the electromagnetic and electrostatic coupling among the inner conductors and the metallic enclosures of the three phases. Then, the paper proposes a modeling method for the widely-used short-distance GIL based on the PI-model (the model consisting of two lumped admittance at each terminal and a lumped impedance in between). The GIL parameters were later simplified with the coupling effect of the metallic enclosure considered, and a simplified PI-model was produced. Finally, the proposed PI-model and its simplified version were built on the Power Systems Computer Aided Design (PSCAD) platform, and their effectiveness verified by simulation results.

Suggested Citation

  • Botong Li & Tianfeng Gu & Bin Li & Yunke Zhang, 2017. "Study on the Gas-Insulated Line Equivalent Model and Simplified Model," Energies, MDPI, vol. 10(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:901-:d:103305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Benato & Sebastian Dambone Sessa & Fabio Guglielmi & Ertugrul Partal & Nasser Tleis, 2014. "Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables," Energies, MDPI, vol. 7(12), pages 1-16, December.
    2. Petar Sarajcev, 2011. "Numerical Analysis of the Magnetic Field of High-Current Busducts and GIL Systems," Energies, MDPI, vol. 4(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Botong Li & Tianfeng Gu & Bin Li & Xiaolong Chen & Weijie Wen, 2019. "A New Principle of Distance Protection for the UHV GIL-Overhead Hybrid Line Based on Frequency Domain Lossless Transmission Line Equation," Energies, MDPI, vol. 12(23), pages 1-12, November.
    2. Krzysztof Lowczowski & Jozef Lorenc & Jozef Zawodniak & Grzegorz Dombek, 2020. "Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements," Energies, MDPI, vol. 13(5), pages 1-24, March.
    3. Roberto Benato & Sebastian Dambone Sessa & Michele Poli & Francesco Sanniti, 2020. "Sequence Impedances of Land Single-Core Insulated Cables: Direct Formulae and Multiconductor Cell Analyses Compared with Measurements," Energies, MDPI, vol. 13(5), pages 1-16, March.
    4. Roberto Benato & İbrahim Balanuye & Fatih Köksal & Nurhan Ozan & Ercüment Özdemirci, 2018. "Installation of XLPE-Insulated 400 kV Submarine AC Power Cables under the Dardanelles Strait: A 4 GW Turkish Grid Reinforcement," Energies, MDPI, vol. 11(1), pages 1-15, January.
    5. Fan Yang & Kai Liu & Peng Cheng & Shaohua Wang & Xiaoyu Wang & Bing Gao & Yalin Fang & Rong Xia & Irfan Ullah, 2016. "The Coupling Fields Characteristics of Cable Joints and Application in the Evaluation of Crimping Process Defects," Energies, MDPI, vol. 9(11), pages 1-19, November.
    6. Krzysztof Lowczowski & Jozef Lorenc & Jerzy Andruszkiewicz & Zbigniew Nadolny & Jozef Zawodniak, 2019. "Novel Earth Fault Protection Algorithm Based on MV Cable Screen Zero Sequence Current Filter," Energies, MDPI, vol. 12(16), pages 1-20, August.
    7. Roberto Benato & Roberto Caldon & Antonio Chiarelli & Massimiliano Coppo & Claudio Garescì & Sebastian Dambone Sessa & Debora Mimo & Michele Modesti & Luca Mora & Francesca Piovesan, 2019. "CALAJOULE: An Italian Research to Lessen Joule Power Losses in Overhead Lines by Means of Innovative Conductors," Energies, MDPI, vol. 12(16), pages 1-21, August.
    8. Roberto Benato & Giovanni Rinzo & Michele Poli, 2019. "Overcoming the Limits of the Charge Transient Fault Location Algorithm by the Artificial Neural Network," Energies, MDPI, vol. 12(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:901-:d:103305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.