IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1048-d105312.html
   My bibliography  Save this article

A Study on the Effects of Starches on the Properties of Alkali-Activated Cement and the Potential of Starch as a Self-Degradable Additive

Author

Listed:
  • Huijing Tan

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Xiuhua Zheng

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Limenglu Ma

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Haixiao Huang

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Bairu Xia

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract

An urgent problem of geothermal energy source development is how to cut down the production costs. The use of temporary sealing materials can reduce the costs associated with the circulation lost by plugging, and increase the production by self-degradation. Based on the utilization of starches as self-degradable additives in the medical field, this paper investigated the effects of three kinds of starches, namely corn starch (CS), hydroxypropyl starch (HPS) and carboxymethyl starch (CMS) on the properties of alkali-activated cement (AAC). In addition, the thermal properties of starch, the compressive strength and microstructures of the cement with starch were tested, to evaluate the potentiality of starch as self-degradable additive for geothermal cement. The analysis showed that: (1) all the starches have the effect of increasing the apparent viscosity, prolonging the setting time and reducing the static fluid loss of alkali-activated cement; (2) the addition of starch increased the number of pores in 200 °C-heated cement, facilitated the leaching process, and thus promoted the self-degradation; and (3) among the three starches, CMS has the most potential as a self-degradable additive.

Suggested Citation

  • Huijing Tan & Xiuhua Zheng & Limenglu Ma & Haixiao Huang & Bairu Xia, 2017. "A Study on the Effects of Starches on the Properties of Alkali-Activated Cement and the Potential of Starch as a Self-Degradable Additive," Energies, MDPI, vol. 10(7), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1048-:d:105312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1048/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huijing Tan & Xiuhua Zheng & Long Chen & Kang Liu & Wenxi Zhu & Bairu Xia, 2019. "The Self-Degradation Mechanism of Polyvinyl Chloride-Modified Slag/Fly Ash Binder for Geothermal Wells," Energies, MDPI, vol. 12(14), pages 1-16, July.
    2. Salaheldin Elkatatny, 2019. "Development of a Homogenous Cement Slurry Using Synthetic Modified Phyllosilicate while Cementing HPHT Wells," Sustainability, MDPI, vol. 11(7), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1048-:d:105312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.