IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p681-d98495.html
   My bibliography  Save this article

Enhancing Insulating Performances of Presspaper by Introduction of Nanofibrillated Cellulose

Author

Listed:
  • Jianwen Huang

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Yuanxiang Zhou

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Longyu Dong

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Zhongliu Zhou

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Xiangjun Zeng

    (Research Department of High Voltage Technology, Electric Power Research Institute of China Southern Power Grid, Guangzhou 510633, China)

Abstract

This study explores the possibility of enhancing both mechanical and breakdown properties of insulating presspaper by the introduction of an organic nano additive. Four different concentrations of nanofibrillated cellulose (NFC) were taken into account: 0.5 wt %, 2.5 wt %, 5 wt %, and 10 wt %. Presspaper containing no NFC was also prepared as a reference. Obtained samples were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Mechanical properties and breakdown behaviors were measured. Results show that the addition of 10 wt % NFC to softwood fibers can achieve the best performance. Tensile strength of reference presspaper is 109 MPa, whereas that of presspaper modified by 10 wt % NFC is 136 MPa, resulting in a 25% increase. The improved tensile strength can be attributed to the increased density and inter fiber bond strength. More importantly, presspaper reinforced by 10 wt % NFC can also achieve enhanced AC and DC breakdown strengths, which are 19% and 21% higher than those of the reference presspaper. It is concluded that NFC is likely to be a promising nano additive for cellulose insulation.

Suggested Citation

  • Jianwen Huang & Yuanxiang Zhou & Longyu Dong & Zhongliu Zhou & Xiangjun Zeng, 2017. "Enhancing Insulating Performances of Presspaper by Introduction of Nanofibrillated Cellulose," Energies, MDPI, vol. 10(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:681-:d:98495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojciech Sikorski & Krzysztof Walczak & Piotr Przybylek, 2016. "Moisture Migration in an Oil-Paper Insulation System in Relation to Online Partial Discharge Monitoring of Power Transformers," Energies, MDPI, vol. 9(12), pages 1-16, December.
    2. Jian Li & Zhiman He & Lianwei Bao & Lijun Yang, 2011. "Influences of Corrosive Sulfur on Copper Wires and Oil-Paper Insulation in Transformers," Energies, MDPI, vol. 4(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyan Nie & Xinlao Wei & Yonghong Wang & Qingguo Chen, 2018. "A Study of Electrical Aging of the Turn-to-Turn Oil-Paper Insulation in Transformers with a Step-Stress Method," Energies, MDPI, vol. 11(12), pages 1-16, November.
    2. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    3. Shuguo Gao & Ying Zhang & Qing Xie & Yuqiang Kan & Si Li & Dan Liu & Fangcheng Lü, 2017. "Research on Partial Discharge Source Localization Based on an Ultrasonic Array and a Step-by-Step Over-Complete Dictionary," Energies, MDPI, vol. 10(5), pages 1-12, April.
    4. Hubert Moranda & Hanna Moscicka-Grzesiak & Piotr Przybylek & Krzysztof Walczak & Radoslaw Szewczyk, 2020. "Comparative Tests of Partial Discharges in Nomex ® 910 Paper and Cellulose Paper," Energies, MDPI, vol. 13(3), pages 1-8, February.
    5. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    6. Wojciech Sikorski, 2018. "Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers," Energies, MDPI, vol. 12(1), pages 1-27, December.
    7. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    8. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    9. Wojciech Sikorski & Krzysztof Walczak & Wieslaw Gil & Cyprian Szymczak, 2020. "On-Line Partial Discharge Monitoring System for Power Transformers Based on the Simultaneous Detection of High Frequency, Ultra-High Frequency, and Acoustic Emission Signals," Energies, MDPI, vol. 13(12), pages 1-37, June.
    10. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    11. Mateusz Cybulski & Piotr Przybylek, 2021. "Application of Molecular Sieves for Drying Transformers Insulated with Mineral Oil, Natural Ester, or Synthetic Ester," Energies, MDPI, vol. 14(6), pages 1-13, March.
    12. Bo Gao & Rui Yu & Guangcai Hu & Cheng Liu & Xin Zhuang & Peng Zhou, 2019. "Development Processes of Surface Trucking and Partial Discharge of Pressboards Immersed in Mineral Oil: Effect of Tip Curvatures," Energies, MDPI, vol. 12(3), pages 1-14, February.
    13. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:681-:d:98495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.