IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p639-d97656.html
   My bibliography  Save this article

Design Optimization of a High Power LED Matrix Luminaire

Author

Listed:
  • Jose Luiz F. Barbosa

    (Experimental & Technological Research and Study Group (NExT), Federal Institute of Goias, Goiania, GO 74055-110, Brazil
    School of Electrical, Mechanical and Computer Engineering, Federal University of Goias, Goiania, GO 74605-010, Brazil
    This paper is an extended version of our paper published in Selected Papers from 16 IEEE International Conference on Environment and Electrical Engineering (EEEIC Florence Italy 6 June 2016).
    These authors contributed equally to this work.)

  • Dan Simon

    (Department of Electrical Engineering and Computer Science, Cleveland State University, Cleveland, OH 44115, USA
    These authors contributed equally to this work.)

  • Wesley P. Calixto

    (Experimental & Technological Research and Study Group (NExT), Federal Institute of Goias, Goiania, GO 74055-110, Brazil
    School of Electrical, Mechanical and Computer Engineering, Federal University of Goias, Goiania, GO 74605-010, Brazil
    These authors contributed equally to this work.)

Abstract

This work presents a methodology for optimizing the layout and geometry of an m × n high power (HP) light emitting diode (LED) luminaire. Two simulators are used to analyze an LED luminaire model. The first simulator uses the finite element method (FEM) to analyze the thermal dissipation, and the second simulator uses the ray tracing method for lighting analysis. The thermal and lighting analysis of the luminaire model is validated with an error of less than 10%. The goal of the optimization process is to find a solution that satisfies both thermal dissipation and light efficiency. The optimization goal is to keep the LED temperature at an acceptable level while still obtaining uniform illumination on a target plane. Even though no optical accessories or active cooling systems are used in the model, the results demonstrate that it is possible to obtain satisfactory results even with a limited number of parameters. The optimization results show that it is possible to design luminaires with 4, 6 and up to 8 HP-LEDs, keeping the LED temperature at about 100 ∘ C. However, the best uniformity on a target plane was found by the heuristic algorithm.

Suggested Citation

  • Jose Luiz F. Barbosa & Dan Simon & Wesley P. Calixto, 2017. "Design Optimization of a High Power LED Matrix Luminaire," Energies, MDPI, vol. 10(5), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:639-:d:97656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byung-Lip Ahn & Ji-Woo Park & Seunghwan Yoo & Jonghun Kim & Seung-Bok Leigh & Cheol-Yong Jang, 2015. "Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings," Energies, MDPI, vol. 8(7), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Leśko & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz, 2020. "Adaptive Luminaire with Variable Luminous Intensity Distribution," Energies, MDPI, vol. 13(3), pages 1-22, February.
    2. Krzysztof Skarżyński & Wojciech Żagan & Kamil Krajewski, 2021. "LED Luminaires: Many Chips—Many Photometric and Lighting Simulation Issues to Solve," Energies, MDPI, vol. 14(15), pages 1-17, July.
    3. Jose Luiz F. Barbosa & Antonio P. Coimbra & Dan Simon & Wesley P. Calixto, 2022. "Optimization Process Applied in the Thermal and Luminous Design of High Power LED Luminaires," Energies, MDPI, vol. 15(20), pages 1-28, October.
    4. Mathias Ekpu & Eugene A. Ogbodo & Felix Ngobigha & Jude E. Njoku, 2022. "Thermal Effect of Cylindrical Heat Sink on Heat Management in LED Applications," Energies, MDPI, vol. 15(20), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Ventola & Gabriele Curcuruto & Matteo Fasano & Saverio Fotia & Vincenzo Pugliese & Eliodoro Chiavazzo & Pietro Asinari, 2016. "Unshrouded Plate Fin Heat Sinks for Electronics Cooling: Validation of a Comprehensive Thermal Model and Cost Optimization in Semi-Active Configuration," Energies, MDPI, vol. 9(8), pages 1-16, August.
    2. Sungjoon Byun & Seounghwan Hyeon & Kwan-Soo Lee, 2022. "Guide Vane for Thermal Enhancement of a LED Heat Sink," Energies, MDPI, vol. 15(7), pages 1-13, March.
    3. Jin-Cherng Shyu & Tsuni Chang & Shun-Ching Lee, 2017. "A Numerical Study on Natural Convection Heat Transfer of Handheld Projectors with a Fin Array," Energies, MDPI, vol. 10(3), pages 1-17, February.
    4. Marcin Kaczmarzyk & Aleksander Starakiewicz & Aleksander Waśniowski, 2020. "Internal Heat Gains in a Lunar Base—A Contemporary Case Study," Energies, MDPI, vol. 13(12), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:639-:d:97656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.