IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p221-d90250.html
   My bibliography  Save this article

Computational Study of the Noise Radiation in a Centrifugal Pump When Flow Rate Changes

Author

Listed:
  • Ming Gao

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Peixin Dong

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4067, Australia)

  • Shenghui Lei

    (Thermal Management Research Group, Efficient Energy Transfer (ηET) Department, Bell Labs Ireland, Nokia, Dublin D15 Y6NT, Ireland)

  • Ali Turan

    (School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD, UK)

Abstract

Noise radiation is of importance for the performance of centrifugal pumps. Aiming at exploring noise radiation patterns of a typical centrifugal pump at different flow rates, a three-dimensional unsteady hydro/aero acoustic model with large eddy simulation (LES) closure is developed. Specifically, the Ffowcs Williams-Hawkings model (FW-H) is employed to predict noise generation by the impeller and volute. The simulated flow fields reveal that the interactions of the blades with the volute induce root mean square (RMS) pressure and further lead to noise radiation. Moreover, it is found that the profiles of total sound pressure level ( TSPL ) regarding the directivity field for the impeller-generated noise demonstrate a typical dipole characteristic behavior, whereas strictly the volute-generated noise exhibits an apparently asymmetric behavior. Additionally, the design operation (Here, 1 Q represents the design operation) generates the lowest TSPL vis-a-vis the off-design operations for all the flow rates studied. In general, as the flow rates decrease from 1 Q to 0.25 Q, TSPL initially increases significantly before 0.75 Q and then levels off afterwards. A similar trend appears for cases having the larger flow rates (1–1.25 Q). The TSPL deviates with the radiation directivity and the maximum is about 50%. It is also found that TSPL by the volute and the blades can reach ~87 dB and ~70 dB at most, respectively. The study may offer a priori guidance for the experimental set up and the actual design layout.

Suggested Citation

  • Ming Gao & Peixin Dong & Shenghui Lei & Ali Turan, 2017. "Computational Study of the Noise Radiation in a Centrifugal Pump When Flow Rate Changes," Energies, MDPI, vol. 10(2), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:221-:d:90250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/221/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaxing Lu & Xiaobing Liu & Yongzhong Zeng & Baoshan Zhu & Bo Hu & Hong Hua, 2020. "Investigation of the Noise Induced by Unstable Flow in a Centrifugal Pump," Energies, MDPI, vol. 13(3), pages 1-22, January.
    2. Jiaxing Lu & Xiaobing Liu & Yongzhong Zeng & Baoshan Zhu & Bo Hu & Shouqi Yuan & Hong Hua, 2019. "Detection of the Flow State for a Centrifugal Pump Based on Vibration," Energies, MDPI, vol. 12(16), pages 1-18, August.
    3. Bjørn H. Hjertager, 2017. "Engineering Fluid Dynamics," Energies, MDPI, vol. 10(10), pages 1-2, September.
    4. Rong Guo & Rennian Li & Renhui Zhang, 2018. "Reconstruction and Prediction of Flow Field Fluctuation Intensity and Flow-Induced Noise in Impeller Domain of Jet Centrifugal Pump Using Gappy POD Method," Energies, MDPI, vol. 12(1), pages 1-17, December.
    5. Chang Guo & Ming Gao & Dongyue Lu & Kun Wang, 2017. "An Experimental Study on the Radiation Noise Characteristics of a Centrifugal Pump with Various Working Conditions," Energies, MDPI, vol. 10(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:221-:d:90250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.