IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1900-d119486.html
   My bibliography  Save this article

Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

Author

Listed:
  • Stephen M. Neill

    (Aerospace Engineering Graduate, College of Engineering and Design, Brunel University London, Uxbridge UB8 3PN, UK)

  • Apostolos Pesyridis

    (Metapulsion Engineering Ltd, 2C Eastbury Avenue, Northwood HA6 3LG, UK)

Abstract

Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN) in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D) and three-dimensional (3-D) scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

Suggested Citation

  • Stephen M. Neill & Apostolos Pesyridis, 2017. "Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight," Energies, MDPI, vol. 10(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1900-:d:119486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1900/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devendra Sen & Apostolos Pesyridis & Andrew Lenton, 2018. "A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines," Energies, MDPI, vol. 11(6), pages 1-32, June.
    2. Andrew Ridgway & Ashish Alex Sam & Apostolos Pesyridis, 2018. "Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies," Energies, MDPI, vol. 11(12), pages 1-29, December.
    3. Sasha Veeran & Apostolos Pesyridis & Lionel Ganippa, 2018. "Ramjet Compression System for a Hypersonic Air Transportation Vehicle Combined Cycle Engine," Energies, MDPI, vol. 11(10), pages 1-22, September.
    4. Fan Li & Mingbo Sun & Zun Cai & Yong Chen & Yongchao Sun & Fei Li & Jiajian Zhu, 2020. "Effects of Additional Cavity Floor Injection on the Ignition and Combustion Processes in a Mach 2 Supersonic Flow," Energies, MDPI, vol. 13(18), pages 1-17, September.
    5. Dongpeng Jia & Yu Pan & Ning Wang & Chaoyang Liu & Kai Yang, 2021. "Combustion Modes and Unsteady Characteristics during the Condition Transition of a Scramjet Combustor," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1900-:d:119486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.