IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1827-d118297.html
   My bibliography  Save this article

Characteristic Analysis and Fault-Tolerant Control of Circulating Current for Modular Multilevel Converters under Sub-Module Faults

Author

Listed:
  • Wen Wu

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China)

  • Xuezhi Wu

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles, Beijing 100044, China)

  • Jingyuan Yin

    (The Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China)

  • Long Jing

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China)

  • Shuai Wang

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China)

  • Jinke Li

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China)

Abstract

A modular multilevel converter (MMC) is considered to be a promising topology for medium- or high-power applications. However, a significantly increased amount of sub-modules (SMs) in each arm also increase the risk of failures. Focusing on the fault-tolerant operation issue for the MMC under SM faults, the operation characteristics of MMC with different numbers of faulty SMs in the arms are analyzed and summarized in this paper. Based on the characteristics, a novel circulating current-suppressing (CCS) fault-tolerant control strategy comprised of a basic control unit (BCU) and virtual resistance compensation control unit (VRCCU) in two parts is proposed, which has three main features: (i) it can suppress the multi-different frequency components of the circulating current under different SM fault types simultaneously; (ii) it can help fast limiting of the transient fault current caused at the faulty SM bypassed moment; and (iii) it does not need extra communication systems to acquire the information of the number of faulty SMs. Moreover, by analyzing the stability performance of the proposed controller using the Root-Locus criterion, the election principle of the value of virtual resistance is revealed. Finally, the efficiency of the control strategy is confirmed with the simulation and experiment studies under different fault conditions.

Suggested Citation

  • Wen Wu & Xuezhi Wu & Jingyuan Yin & Long Jing & Shuai Wang & Jinke Li, 2017. "Characteristic Analysis and Fault-Tolerant Control of Circulating Current for Modular Multilevel Converters under Sub-Module Faults," Energies, MDPI, vol. 10(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1827-:d:118297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1827/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyuan Yin & Wen Wu & Tongzhen Wei & Xuezhi Wu & Qunhai Huo, 2018. "A Novel Fault-Tolerant Control of Modular Multilevel Converter under Sub-Module Faults Based on Phase Disposition PWM," Energies, MDPI, vol. 12(1), pages 1-17, December.
    2. Jaume Girona-Badia & Oriol Gomis-Bellmunt & Tomàs Lledó-Ponsati & Macià Capó-Lliteras & Carlos Collados-Rodriguez & Nicolaos Antonio Cutululis & Oscar Saborío-Romano & Daniel Montesinos-Miracle & Marc, 2022. "Design, Control and Testing of a Modular Multilevel Converter with a Single Cell per Arm in Grid-Forming and Grid-Following Operations for Scaled-Down Experimental Platforms," Energies, MDPI, vol. 15(5), pages 1-16, March.
    3. Jinke Li & Jingyuan Yin, 2019. "Fault-Tolerant Control Strategies and Capability without Redundant Sub-Modules in Modular Multilevel Converters," Energies, MDPI, vol. 12(9), pages 1-21, May.
    4. Dae-Seak Cha & Jung-Sik Choi & Seung-Yeol Oh & Hyun-Jin Ahn & Young-Cheol Lim, 2018. "Hot-Swappable Modular Converter System Control for Heterogeneous Batteries and ESS," Energies, MDPI, vol. 11(2), pages 1-19, February.
    5. Yiqi Liu & Danhua Li & Yu Jin & Qingbo Wang & Wenlong Song, 2018. "Research on Unbalance Fault-Tolerant Control Strategy of Modular Multilevel Photovoltaic Grid-Connected Inverter," Energies, MDPI, vol. 11(6), pages 1-18, May.
    6. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.
    7. Qinyue Zhu & Wei Dai & Lei Guan & Xitang Tan & Zhaoyang Li & Dabo Xie, 2019. "A Fault-Tolerant Control Strategy of Modular Multilevel Converter with Sub-Module Faults Based on Neutral Point Compound Shift," Energies, MDPI, vol. 12(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1827-:d:118297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.