Author
Listed:
- Eleftheria Koutsaki
(Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)
- George Vardakis
(Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)
- Nikos Papadakis
(Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)
Abstract
An event is an occurrence that takes place at a specific time and location that can be either weather-related (snowfall), social (crime), natural (earthquake), political (political unrest), or medical (pandemic) in nature. These events do not belong to the “normal” or “usual” spectrum and result in a change in a given situation; thus, their prediction would be very beneficial, both in terms of timely response to them and for their prevention, for example, the prevention of traffic accidents. However, this is currently challenging for researchers, who are called upon to manage and analyze a huge volume of data in order to design applications for predicting events using artificial intelligence and high computing power. Although significant progress has been made in this area, the heterogeneity in the input data that a forecasting application needs to process—in terms of their nature (spatial, temporal, and semantic)—and the corresponding complex dependencies between them constitute the greatest challenge for researchers. For this reason, the initial forecasting applications process data for specific situations, in terms of number and characteristics, while, at the same time, having the possibility to respond to different situations, e.g., an application that predicts a pandemic can also predict a central phenomenon, simply by using different data types. In this work, we present the forecasting applications that have been designed to date. We also present a model for predicting traffic accidents using categorical logic, creating a Knowledge Base using the Resolution algorithm as a proof of concept. We study and analyze all possible scenarios that arise under different conditions. Finally, we implement the traffic accident prediction model using the Prolog language with the corresponding Queries in JPL.
Suggested Citation
Eleftheria Koutsaki & George Vardakis & Nikos Papadakis, 2025.
"Event Prediction Using Spatial–Temporal Data for a Predictive Traffic Accident Approach Through Categorical Logic,"
Data, MDPI, vol. 10(6), pages 1-27, June.
Handle:
RePEc:gam:jdataj:v:10:y:2025:i:6:p:85-:d:1670725
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:10:y:2025:i:6:p:85-:d:1670725. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.