IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v10y2025i6p85-d1670725.html
   My bibliography  Save this article

Event Prediction Using Spatial–Temporal Data for a Predictive Traffic Accident Approach Through Categorical Logic

Author

Listed:
  • Eleftheria Koutsaki

    (Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)

  • George Vardakis

    (Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)

  • Nikos Papadakis

    (Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)

Abstract

An event is an occurrence that takes place at a specific time and location that can be either weather-related (snowfall), social (crime), natural (earthquake), political (political unrest), or medical (pandemic) in nature. These events do not belong to the “normal” or “usual” spectrum and result in a change in a given situation; thus, their prediction would be very beneficial, both in terms of timely response to them and for their prevention, for example, the prevention of traffic accidents. However, this is currently challenging for researchers, who are called upon to manage and analyze a huge volume of data in order to design applications for predicting events using artificial intelligence and high computing power. Although significant progress has been made in this area, the heterogeneity in the input data that a forecasting application needs to process—in terms of their nature (spatial, temporal, and semantic)—and the corresponding complex dependencies between them constitute the greatest challenge for researchers. For this reason, the initial forecasting applications process data for specific situations, in terms of number and characteristics, while, at the same time, having the possibility to respond to different situations, e.g., an application that predicts a pandemic can also predict a central phenomenon, simply by using different data types. In this work, we present the forecasting applications that have been designed to date. We also present a model for predicting traffic accidents using categorical logic, creating a Knowledge Base using the Resolution algorithm as a proof of concept. We study and analyze all possible scenarios that arise under different conditions. Finally, we implement the traffic accident prediction model using the Prolog language with the corresponding Queries in JPL.

Suggested Citation

  • Eleftheria Koutsaki & George Vardakis & Nikos Papadakis, 2025. "Event Prediction Using Spatial–Temporal Data for a Predictive Traffic Accident Approach Through Categorical Logic," Data, MDPI, vol. 10(6), pages 1-27, June.
  • Handle: RePEc:gam:jdataj:v:10:y:2025:i:6:p:85-:d:1670725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/10/6/85/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/10/6/85/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Luo & William K. Thompson & Timothy M. Herr & Zexian Zeng & Mark A. Berendsen & Siddhartha R. Jonnalagadda & Matthew B. Carson & Justin Starren, 2017. "Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review," Drug Safety, Springer, vol. 40(11), pages 1075-1089, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rybinski, Krzysztof, 2020. "The forecasting power of the multi-language narrative of sell-side research: A machine learning evaluation," Finance Research Letters, Elsevier, vol. 34(C).
    2. Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
    3. Rybinski, Krzysztof, 2021. "Ranking professional forecasters by the predictive power of their narratives," International Journal of Forecasting, Elsevier, vol. 37(1), pages 186-204.
    4. Su Golder & Dongfang Xu & Karen O’Connor & Yunwen Wang & Mahak Batra & Graciela Gonzalez Hernandez, 2025. "Leveraging Natural Language Processing and Machine Learning Methods for Adverse Drug Event Detection in Electronic Health/Medical Records: A Scoping Review," Drug Safety, Springer, vol. 48(4), pages 321-337, April.
    5. Yiqing Zhao & Yue Yu & Hanyin Wang & Yikuan Li & Yu Deng & Guoqian Jiang & Yuan Luo, 2022. "Machine Learning in Causal Inference: Application in Pharmacovigilance," Drug Safety, Springer, vol. 45(5), pages 459-476, May.
    6. Na Zhang & Ping Yu & Yupeng Li & Wei Gao, 2022. "Research on the Evolution of Consumers’ Purchase Intention Based on Online Reviews and Opinion Dynamics," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
    7. Tavpritesh Sethi & Nigam H. Shah, 2017. "Pharmacovigilance Using Textual Data: The Need to Go Deeper and Wider into the Con(text)," Drug Safety, Springer, vol. 40(11), pages 1047-1048, November.
    8. Apostolos G. Katsafados & Dimitris Anastasiou, 2024. "Short-term prediction of bank deposit flows: do textual features matter?," Annals of Operations Research, Springer, vol. 338(2), pages 947-972, July.
    9. Gianluca Trifirò & Janet Sultana & Andrew Bate, 2018. "From Big Data to Smart Data for Pharmacovigilance: The Role of Healthcare Databases and Other Emerging Sources," Drug Safety, Springer, vol. 41(2), pages 143-149, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:10:y:2025:i:6:p:85-:d:1670725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.