Author
Listed:
- Juan Carlos Torres-Galván
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
- Paul Hernández Herrera
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
- Juan Antonio Obispo
(Comité Estatal de Sanidad Vegetal de San Luis Potosí, Rioverde 796133, Mexico)
- Xocoyotzin Guadalupe Ávila Cruz
(Comité Estatal de Sanidad Vegetal de San Luis Potosí, Rioverde 796133, Mexico)
- Liliana Montserrat Camacho Ibarra
(Comité Estatal de Sanidad Vegetal de San Luis Potosí, Rioverde 796133, Mexico)
- Paula Magaldi Morales Orosco
(Comité Estatal de Sanidad Vegetal de San Luis Potosí, Rioverde 796133, Mexico)
- Alfonso Alba
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
Laboratorio Nacional-Centro de Investigación, Instrumentación e Imagenología Médica, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
- Edgar R. Arce-Santana
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
Laboratorio Nacional-Centro de Investigación, Instrumentación e Imagenología Médica, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
- Valdemar Arce-Guevara
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
Laboratorio Nacional-Centro de Investigación, Instrumentación e Imagenología Médica, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
- J. S. Murguía
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
Laboratorio Nacional-Centro de Investigación, Instrumentación e Imagenología Médica, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
- Edgar Guevara
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
- Miguel G. Ramírez-Elías
(Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico)
Abstract
In agriculture, machine learning (ML) and deep learning (DL) have increased significantly in the last few years. The use of ML and DL for image classification in plant disease has generated significant interest due to their cost, automatization, scalability, and early detection. However, high-quality image datasets are required to train robust classifier models for plant disease detection. In this work, we have created an image dataset of 649 orange leaves divided into two groups: control ( n = 379) and huanglongbing (HLB) disease ( n = 270). The images were acquired with several smartphone cameras of high resolution and processed to remove the background. The dataset enriches the information on characteristics and symptoms of citrus leaves with HLB and healthy leaves. This enhancement makes the dataset potentially valuable for disease identification through leaf segmentation and abnormality detection, particularly when applying ML and DL models.
Suggested Citation
Juan Carlos Torres-Galván & Paul Hernández Herrera & Juan Antonio Obispo & Xocoyotzin Guadalupe Ávila Cruz & Liliana Montserrat Camacho Ibarra & Paula Magaldi Morales Orosco & Alfonso Alba & Edgar R. , 2025.
"Orange Leaves Images Dataset for the Detection of Huanglongbing,"
Data, MDPI, vol. 10(5), pages 1-8, April.
Handle:
RePEc:gam:jdataj:v:10:y:2025:i:5:p:56-:d:1640919
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:10:y:2025:i:5:p:56-:d:1640919. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.