Author
Listed:
- Michael Gerlich
(Center for Strategic Corporate Foresight and Sustainability, SBS Swiss Business School, 8302 Kloten, Switzerland)
Abstract
The rapid adoption of generative AI raises questions not only about its transformative potential but also about its cognitive and societal risks. This study contributes to the debate by presenting cross-country experimental data ( n = 150; Germany, Switzerland, United Kingdom) on how individuals engage with generative AI under different conditions: human-only, human + AI (unguided), human + AI (guided with structured prompting), and AI-only benchmarks. Across 450 evaluated responses, critical reasoning was assessed via expert rubric ratings, while perceived reflective engagement was captured through self-report indices. Results show that unguided AI use fosters cognitive offloading without improving reasoning quality, whereas structured prompting significantly reduces offloading and enhances both critical reasoning and reflective engagement. Mediation and latent class analyses reveal that guided AI use supports deeper human involvement and mitigates demographic disparities in performance. Beyond theoretical contributions, this study offers practical implications for business and society. As organisations integrate AI into workflows, unstructured use risks undermining workforce decision making and critical engagement. Structured prompting, by contrast, provides a scalable and low-cost governance tool that fosters responsible adoption, supports equitable access to technological benefits, and aligns with societal calls for human-centric AI. These findings highlight the dual nature of AI as both a productivity enabler and a cognitive risk, and position structured prompting as a promising intervention to navigate the emerging challenges of AI adoption in business and society.
Suggested Citation
Michael Gerlich, 2025.
"From Offloading to Engagement: An Experimental Study on Structured Prompting and Critical Reasoning with Generative AI,"
Data, MDPI, vol. 10(11), pages 1-31, October.
Handle:
RePEc:gam:jdataj:v:10:y:2025:i:11:p:172-:d:1782895
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:10:y:2025:i:11:p:172-:d:1782895. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.