IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v10y2025i10p153-d1757442.html
   My bibliography  Save this article

Sliding Performance Evaluation with Machine Learning-Based Trajectory Analysis for Skeleton

Author

Listed:
  • Ting Yu

    (Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Zhen Peng

    (National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zining Wang

    (National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Weiya Chen

    (National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Bo Huo

    (Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China)

Abstract

Skeleton is an extreme sliding sport in the Winter Olympics, where formulating targeted sliding strategies, based on training videos to navigate complex tracks, is particularly important. To make in-depth use of training video records, this study proposes an analytical method based on Mixture of Gaussians (MoG) and K-means clustering to extract and analyze trajectories from recorded videos for sliding performance evaluation and strategy development. A case study was conducted using data from the Chinese national skeleton team at the Yanqing Sliding Center, obtaining 741, 834, and 726 sliding trajectories from three representative curves. These trajectories were divided into groups based on sliding completion time (fast, medium, and slow groups). The consistency of trajectories within each group was calculated to evaluate sliding stability, while trajectory patterns in the fast group were clustered and described based on the average values of multiple features (starting position, ending position, and apex orthogonal offset). The results showed that more skilled athletes exhibited greater sliding stability (lower ρ C -values), and on each curve, there were sliding patterns that performed significantly better than others. This research quantifies the characteristics of athletes’ sliding trajectories on curves, facilitating the visual tracking of training effects and the development of personalized strategies. It provides coaches and athletes with scientific decision-making support and clear directions for improvement, ultimately enabling precise enhancements in training efficiency and competitive performance, while also laying a technical foundation for the future development of intelligent training systems.

Suggested Citation

  • Ting Yu & Zhen Peng & Zining Wang & Weiya Chen & Bo Huo, 2025. "Sliding Performance Evaluation with Machine Learning-Based Trajectory Analysis for Skeleton," Data, MDPI, vol. 10(10), pages 1-17, September.
  • Handle: RePEc:gam:jdataj:v:10:y:2025:i:10:p:153-:d:1757442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/10/10/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/10/10/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    2. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    3. Michael Brusco & Hans-Friedrich Köhn, 2009. "Exemplar-Based Clustering via Simulated Annealing," Psychometrika, Springer;The Psychometric Society, vol. 74(3), pages 457-475, September.
    4. Amaldi, Edoardo & Coniglio, Stefano, 2013. "A distance-based point-reassignment heuristic for the k-hyperplane clustering problem," European Journal of Operational Research, Elsevier, vol. 227(1), pages 22-29.
    5. Adib Roshani & Mehdi Hamidi, 2022. "Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 3981-4001, September.
    6. Jorge A. Rivero, 2023. "Unobserved Grouped Heteroskedasticity and Fixed Effects," Papers 2310.14068, arXiv.org, revised Oct 2023.
    7. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    8. Christian Hennig, 2022. "An empirical comparison and characterisation of nine popular clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 201-229, March.
    9. Grégory Jolivet & Fabien Postel-Vinay, 2025. "A Structural Analysis of Mental Health and Labour Market Trajectories," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 92(3), pages 1920-1954.
    10. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    11. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    12. Susan Brudvig & Michael J. Brusco & J. Dennis Cradit, 2019. "Joint selection of variables and clusters: recovering the underlying structure of marketing data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(1), pages 1-12, March.
    13. Daniel Aloise & Pierre Hansen, 2011. "Evaluating a branch-and-bound RLT-based algorithm for minimum sum-of-squares clustering," Journal of Global Optimization, Springer, vol. 49(3), pages 449-465, March.
    14. Aurore Delaigle & Peter Hall & Tung Pham, 2019. "Clustering functional data into groups by using projections," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 271-304, April.
    15. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    16. repec:osf:osfxxx:r35bz_v1 is not listed on IDEAS
    17. Michael Brusco & Patrick Doreian & Andrej Mrvar & Douglas Steinley, 2011. "Two Algorithms for Relaxed Structural Balance Partitioning: Linking Theory, Models, and Data to Understand Social Network Phenomena," Sociological Methods & Research, , vol. 40(1), pages 57-87, February.
    18. Turkensteen, Marcel & Klose, Andreas, 2012. "Demand dispersion and logistics costs in one-to-many distribution systems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 499-507.
    19. Ahmed Albatineh & Magdalena Niewiadomska-Bugaj, 2011. "MCS: A Method for Finding the Number of Clusters," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 184-209, July.
    20. Daniel Aloise & Nielsen Castelo Damasceno & Nenad Mladenović & Daniel Nobre Pinheiro, 2017. "On Strategies to Fix Degenerate k-means Solutions," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 165-190, July.
    21. Mohammad Rezaei, 2020. "Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 352-365, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:10:y:2025:i:10:p:153-:d:1757442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.