IDEAS home Printed from https://ideas.repec.org/a/gam/jcommo/v4y2025i2p11-d1681037.html
   My bibliography  Save this article

Tail Risk in Weather Derivatives

Author

Listed:
  • Tuoyuan Cheng

    (Risk Management Institute, National University of Singapore, Singapore 119244, Singapore)

  • Saikiran Reddy Poreddy

    (Risk Management Institute, National University of Singapore, Singapore 119244, Singapore)

  • Kan Chen

    (Risk Management Institute, National University of Singapore, Singapore 119244, Singapore
    Department of Mathematics, National University of Singapore, Singapore 119077, Singapore)

Abstract

Weather derivative markets, particularly Chicago Mercantile Exchange (CME) Heating Degree Day (HDD) and Cooling Degree Day (CDD) futures, face challenges from complex temperature dynamics and spatially heterogeneous co-extremes that standard Gaussian models overlook. Using daily data from 13 major U.S. cities (2014–2024), we first construct a two-stage baseline model to extract standardized residuals isolating stochastic temperature deviations. We then estimate the Extreme Value Index (EVI) of HDD/CDD residuals, finding that the nonlinear degree-day transformation amplifies univariate tail risk, notably for warm-winter HDD events in northern cities. To assess multivariate extremes, we compute Tail Dependence Coefficient (TDC), revealing pronounced, geographically clustered tail dependence among HDD residuals and weaker dependence for CDD. Finally, we compare Gaussian, Student’s t , and Regular Vine Copula (R-Vine) copulas via joint VaR–ES backtesting. The R-Vine copula reproduces HDD portfolio tail risk, whereas elliptical copulas misestimate portfolio losses. These findings highlight the necessity of flexible dependence models, particularly R-Vine, to set margins, allocate capital, and hedge effectively in weather derivative markets.

Suggested Citation

  • Tuoyuan Cheng & Saikiran Reddy Poreddy & Kan Chen, 2025. "Tail Risk in Weather Derivatives," Commodities, MDPI, vol. 4(2), pages 1-17, June.
  • Handle: RePEc:gam:jcommo:v:4:y:2025:i:2:p:11-:d:1681037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-2432/4/2/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-2432/4/2/11/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    2. Kaihua Deng & Jie Qiu, 2021. "Backtesting expected shortfall and beyond," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1109-1125, July.
    3. Shanghui Jia & Xinhui Chen & Liyan Han & Jiayu Jin, 2023. "Global climate change and commodity markets: A hedging perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1393-1422, October.
    4. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    5. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    6. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    7. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    8. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    9. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    10. Emanuel Sommer & Karoline Bax & Claudia Czado, 2022. "Vine Copula based portfolio level conditional risk measure forecasting," Papers 2208.09156, arXiv.org, revised Feb 2023.
    11. Bressan, Giacomo Maria & Romagnoli, Silvia, 2021. "Climate risks and weather derivatives: A copula-based pricing model," Journal of Financial Stability, Elsevier, vol. 54(C).
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2007. "Putting a Price on Temperature," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 746-767, December.
    14. Robert J. Erhardt & Richard L. Smith, 2014. "Weather Derivative Risk Measures for Extreme Events," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(3), pages 379-393, July.
    15. Sara Solanilla Blanco, 2025. "Local sensitivity analysis of heating degree day and cooling degree day temperature derivative prices," Quantitative Finance, Taylor & Francis Journals, vol. 25(4), pages 653-670, April.
    16. Ivana STULEC & Kristina PETLJAK & Tomislav BAKOVIC, 2016. "Effectiveness of weather derivatives as a hedge against the weather risk in agriculture," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(8), pages 356-362.
    17. Fred Espen Benth & Jūratė Šaltytė Benth, 2011. "Weather Derivatives and Stochastic Modelling of Temperature," International Journal of Stochastic Analysis, Hindawi, vol. 2011, pages 1-21, July.
    18. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    19. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2011. "Statistical Tools for Finance and Insurance (2nd edition)," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook1101, December.
    20. Angelos Prentzas & Thomas Bournaris & Stefanos Nastis & Christina Moulogianni & George Vlontzos, 2024. "Enhancing Sustainability through Weather Derivative Option Contracts: A Risk Management Tool in Greek Agriculture," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
    21. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    2. Wolfgang Karl Hardle and Maria Osipenko, 2012. "Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    4. Larsson, Karl & Green, Rikard & Benth, Fred Espen, 2023. "A stochastic time-series model for solar irradiation," Energy Economics, Elsevier, vol. 117(C).
    5. Tran, Ngoc M. & Burdejová, Petra & Ospienko, Maria & Härdle, Wolfgang K., 2019. "Principal component analysis in an asymmetric norm," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 1-21.
    6. Alexander J. McNeil, 2021. "Modelling Volatile Time Series with V-Transforms and Copulas," Risks, MDPI, vol. 9(1), pages 1-26, January.
    7. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    8. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, November.
    9. repec:hum:wpaper:sfb649dp2014-001 is not listed on IDEAS
    10. Silvana Stefani & Gleda Kutrolli & Enrico Moretto & Sergei Kulakov, 2020. "Managing Meteorological Risk through Expected Shortfall," Risks, MDPI, vol. 8(4), pages 1-23, November.
    11. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    12. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    13. Andrea Barth & Fred Espen Benth & Jurgen Potthoff, 2011. "Hedging of Spatial Temperature Risk with Market-Traded Futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(2), pages 93-117.
    14. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Prabakaran, Sellamuthu & Garcia, Isabel C. & Mora, Jose U., 2020. "A temperature stochastic model for option pricing and its impacts on the electricity market," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 58-77.
    16. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    17. Benth, Fred Espen & Taib, Che Mohd Imran Che, 2013. "On the speed towards the mean for continuous time autoregressive moving average processes with applications to energy markets," Energy Economics, Elsevier, vol. 40(C), pages 259-268.
    18. Martin Bladt & Alexander J. McNeil, 2020. "Time series copula models using d-vines and v-transforms," Papers 2006.11088, arXiv.org, revised Jul 2021.
    19. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    20. repec:hum:wpaper:sfb649dp2009-046 is not listed on IDEAS
    21. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, November.
    22. Benth, Fred & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers 2009-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcommo:v:4:y:2025:i:2:p:11-:d:1681037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.