IDEAS home Printed from https://ideas.repec.org/a/gam/jcommo/v4y2025i2p11-d1681037.html
   My bibliography  Save this article

Tail Risk in Weather Derivatives

Author

Listed:
  • Tuoyuan Cheng

    (Risk Management Institute, National University of Singapore, Singapore 119244, Singapore)

  • Saikiran Reddy Poreddy

    (Risk Management Institute, National University of Singapore, Singapore 119244, Singapore)

  • Kan Chen

    (Risk Management Institute, National University of Singapore, Singapore 119244, Singapore
    Department of Mathematics, National University of Singapore, Singapore 119077, Singapore)

Abstract

Weather derivative markets, particularly Chicago Mercantile Exchange (CME) Heating Degree Day (HDD) and Cooling Degree Day (CDD) futures, face challenges from complex temperature dynamics and spatially heterogeneous co-extremes that standard Gaussian models overlook. Using daily data from 13 major U.S. cities (2014–2024), we first construct a two-stage baseline model to extract standardized residuals isolating stochastic temperature deviations. We then estimate the Extreme Value Index (EVI) of HDD/CDD residuals, finding that the nonlinear degree-day transformation amplifies univariate tail risk, notably for warm-winter HDD events in northern cities. To assess multivariate extremes, we compute Tail Dependence Coefficient (TDC), revealing pronounced, geographically clustered tail dependence among HDD residuals and weaker dependence for CDD. Finally, we compare Gaussian, Student’s t , and Regular Vine Copula (R-Vine) copulas via joint VaR–ES backtesting. The R-Vine copula reproduces HDD portfolio tail risk, whereas elliptical copulas misestimate portfolio losses. These findings highlight the necessity of flexible dependence models, particularly R-Vine, to set margins, allocate capital, and hedge effectively in weather derivative markets.

Suggested Citation

  • Tuoyuan Cheng & Saikiran Reddy Poreddy & Kan Chen, 2025. "Tail Risk in Weather Derivatives," Commodities, MDPI, vol. 4(2), pages 1-17, June.
  • Handle: RePEc:gam:jcommo:v:4:y:2025:i:2:p:11-:d:1681037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-2432/4/2/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-2432/4/2/11/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcommo:v:4:y:2025:i:2:p:11-:d:1681037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.