IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v7y2025i4p87-d1767367.html

Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective

Author

Listed:
  • Isaac Kwesi Nooni

    (School of Atmospheric Science and Remote Sensing, Wuxi University, Wuxi 214105, China)

  • Thywill Cephas Dzogbewu

    (Department of Mechanical and Mechatronics Engineering, Central University of Technology, Free State, Bloemfontein 9301, South Africa
    Centre for Rapid Prototyping and Manufacturing, Central University of Technology, Free State, Bloemfontein 9301, South Africa)

Abstract

The hydrogen economy stands at the forefront of the global energy transition, and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping, topology optimization, functional integration of cooling channels, and the fabrication of intricate, hierarchical, structured pores with precisely controlled connectivity. These features facilitate efficient heat and mass transfer, thereby improving hydrogen production, storage, and utilization efficiency. Furthermore, AM’s multi-material and functionally graded printing capability holds promise for producing components with tailored properties to mitigate hydrogen embrittlement, significantly extending operational lifespan. Collectively, these advances suggest that AM could lower manufacturing costs for hydrogen-related systems while improving performance and reliability. However, the current literature provides limited evidence on the integrated techno-economic advantages of AM in hydrogen applications, posing a significant barrier to large-scale industrial adoption. At present, the technological readiness level (TRL) of AM-based hydrogen components is estimated to be 4–5, reflecting laboratory-scale progress but underscoring the need for further development, validation and industrial-scale demonstration before commercialization can be realized.

Suggested Citation

  • Isaac Kwesi Nooni & Thywill Cephas Dzogbewu, 2025. "Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective," Clean Technol., MDPI, vol. 7(4), pages 1-26, October.
  • Handle: RePEc:gam:jcltec:v:7:y:2025:i:4:p:87-:d:1767367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/7/4/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/7/4/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
    2. Asim Kumar Sarker & Abul Kalam Azad & Mohammad G. Rasul & Arun Teja Doppalapudi, 2023. "Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review," Energies, MDPI, vol. 16(3), pages 1-17, February.
    3. Scotti, Gianmario & Kanninen, Petri & Matilainen, Ville-Pekka & Salminen, Antti & Kallio, Tanja, 2016. "Stainless steel micro fuel cells with enclosed channels by laser additive manufacturing," Energy, Elsevier, vol. 106(C), pages 475-481.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Cacciuttolo & Martin Navarrete & Edison Atencio, 2024. "Renewable Wind Energy Implementation in South America: A Comprehensive Review and Sustainable Prospects," Sustainability, MDPI, vol. 16(14), pages 1-45, July.
    2. Dong, Tianshu & Duan, Xiudong & Huang, Yuanyuan & Huang, Danji & Luo, Yingdong & Liu, Ziyu & Ai, Xiaomeng & Fang, Jiakun & Song, Chaolong, 2024. "Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform," Applied Energy, Elsevier, vol. 356(C).
    3. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    4. Juan Pous de la Flor & Juan Pous Cabello & María de la Cruz Castañeda & Marcelo Fabián Ortega & Pedro Mora, 2024. "New Uses for Coal Mines as Potential Power Generators and Storage Sites," Energies, MDPI, vol. 17(9), pages 1-16, May.
    5. Naimul Haque & Abul Kalam Azad, 2023. "Comparative Study of Hydrogen Production from Organic Fraction of Municipal Solid Waste and Its Challenges: A Review," Energies, MDPI, vol. 16(23), pages 1-16, November.
    6. Shufeng Yang & Bin Hou & Zhiqiang Xie & Gaoqiang Yang, 2025. "Influence of the Porous Transport Layer Surface Structure on Overpotentials in PEM Water Electrolysis," Energies, MDPI, vol. 18(16), pages 1-11, August.
    7. Ma, Shuaihao & Wang, Kaichen & Xiao, Feng & Zhang, Tianying & Ye, Feng & Xu, Chao & Liu, Jianguo, 2025. "In-plane performance analysis of PEM electrolyzer cell under multiple operating conditions based on anode segmented visualization design," Applied Energy, Elsevier, vol. 381(C).
    8. Alvin Garcia Palanca & Cherry Lyn V. Chao & Kristian July R. Yap & Rizalinda L. de Leon, 2025. "Bridging the Gap: Public Perception and Acceptance of Hydrogen Technology in the Philippines," Sustainability, MDPI, vol. 17(1), pages 1-23, January.
    9. Shammya Afroze & Amal Najeebah Shalihah Binti Sofri & Md Sumon Reza & Zhanar Baktybaevna Iskakova & Asset Kabyshev & Kairat A. Kuterbekov & Kenzhebatyr Z. Bekmyrza & Lidiya Taimuratova & Mohammad Raki, 2023. "Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review," Energies, MDPI, vol. 16(23), pages 1-22, November.
    10. Ayiguzhali Tuluhong & Qingpu Chang & Lirong Xie & Zhisen Xu & Tengfei Song, 2024. "Current Status of Green Hydrogen Production Technology: A Review," Sustainability, MDPI, vol. 16(20), pages 1-47, October.
    11. Francisco L. D. Simões & Diogo M. F. Santos, 2024. "A SWOT Analysis of the Green Hydrogen Market," Energies, MDPI, vol. 17(13), pages 1-23, June.
    12. Xing Cao & Jingang Wang & Pengcheng Zhao & Haiting Xia & Yun Li & Liming Sun & Wei He, 2023. "Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power," Energies, MDPI, vol. 16(8), pages 1-13, April.
    13. Christian Manuel Moreno Rocha & Jorge D. Pertuz Ortiz & Neyder A. Rodriguez Ibanez, 2023. "A Diffuse Analysis Based on Analytical Processes to Prioritize Barriers in the Development of Renewable Energy Technologies in Alignment with the United Nations Sustainable Development Goals: Evidence," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 481-195, July.
    14. Sun, Cheng & Wang, Yun & McMurtrey, Michael D. & Jerred, Nathan D. & Liou, Frank & Li, Ju, 2021. "Additive manufacturing for energy: A review," Applied Energy, Elsevier, vol. 282(PA).
    15. Garcia G., Matias & Oliva H., Sebastian, 2023. "Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile," Energy, Elsevier, vol. 278(PB).
    16. Rezaei, Sajjad & Hormaza Mejia, Alejandra & Wu, Yanchen & Reed, Jeffrey & Brouwer, Jack, 2025. "Global warming impacts of the transition from fossil fuel conversion and infrastructure to hydrogen," Applied Energy, Elsevier, vol. 397(C).
    17. Nadaleti, Willian Cézar & Cardozo, Emanuélle & Bittencourt Machado, Jones & Maximilla Pereira, Peterson & Costa dos Santos, Maele & Gomes de Souza, Eduarda & Haertel, Paula & Kunde Correa, Erico & Vie, 2023. "Hydrogen and electricity potential generation from rice husks and persiculture biomass in Rio Grande do Sul, Brazil," Renewable Energy, Elsevier, vol. 216(C).
    18. Nestor F. Guerrero-Rodríguez & Daniel A. De La Rosa-Leonardo & Ricardo Tapia-Marte & Francisco A. Ramírez-Rivera & Juan Faxas-Guzmán & Alexis B. Rey-Boué & Enrique Reyes-Archundia, 2024. "An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production," Sustainability, MDPI, vol. 16(13), pages 1-29, June.
    19. Yujiro Hirano & Yukiko Yoshida & Takahiro Yoshida & Yoshiki Yamagata & Suguru Mizutani & Ji Xuan, 2025. "Evaluation of CO 2 Emissions Reduction in the Japanese Residential Sector Through Energy-Saving Scenarios Based on Large-Scale Survey Data," Energies, MDPI, vol. 18(8), pages 1-21, April.
    20. Mustafa Kamal & Renzon Daniel Cosme Pecho & Hassan Falah Fakhruldeen & Hailer Sharif & Vedran Mrzljak & Saber Arabi Nowdeh & Igor Poljak, 2023. "Photovoltaic/Hydrokinetic/Hydrogen Energy System Sizing Considering Uncertainty: A Stochastic Approach Using Two-Point Estimate Method and Improved Gradient-Based Optimizer," Sustainability, MDPI, vol. 15(21), pages 1-30, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:7:y:2025:i:4:p:87-:d:1767367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.