IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v7y2025i4p86-d1767173.html

Is Green Hydrogen a Strategic Opportunity for Albania? A Techno-Economic, Environmental, and SWOT Analysis

Author

Listed:
  • Andi Mehmeti

    (Faculty of Engineering and Computer Science, University College of Business (UCB), Vangjel Noti 25, 1025 Tirana, Albania
    Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, 70010 Valenzano, Italy)

  • Endrit Elezi

    (Faculty of Engineering and Computer Science, University College of Business (UCB), Vangjel Noti 25, 1025 Tirana, Albania)

  • Armila Xhebraj

    (Faculty of Engineering and Computer Science, University College of Business (UCB), Vangjel Noti 25, 1025 Tirana, Albania)

  • Mira Andoni

    (Faculty of Engineering and Computer Science, University College of Business (UCB), Vangjel Noti 25, 1025 Tirana, Albania)

  • Ylber Bezo

    (Faculty of Economics, Law and Social Sciences, University College of Business (UCB), Vangjel Noti 25, 1025 Tirana, Albania)

Abstract

Hydrogen is increasingly recognized as a clean energy vector and storage medium, yet its viability and strategic role in the Western Balkans remain underexplored. This study provides the first comprehensive techno-economic, environmental, and strategic evaluation of hydrogen production pathways in Albania. Results show clear trade-offs across options. The levelized cost of hydrogen (LCOH) is estimated at 8.76 €/kg H 2 for grid-connected, 7.75 €/kg H 2 for solar, and 7.66 €/kg H 2 for wind electrolysis—values above EU averages and reliant on lower electricity costs and efficiency gains. In contrast, fossil-based hydrogen via steam methane reforming (SMR) is cheaper at 3.45 €/kg H 2 , rising to 4.74 €/kg H 2 with carbon capture and storage (CCS). Environmentally, Life Cycle Assessment (LCA) results show much lower Global Warming Potential (<1 kg CO 2 -eq/kg H 2 ) for renewables compared with ~10.39 kg CO 2 -eq/kg H 2 for SMR, reduced to 3.19 kg CO 2 -eq/kg H 2 with CCS. However, grid electrolysis dominated by hydropower entails high water-scarcity impacts, highlighting resource trade-offs. Strategically, Albania’s growing solar and wind projects (electricity prices of 24.89–44.88 €/MWh), coupled with existing gas infrastructure and EU integration, provide strong potential. While regulatory gaps and limited expertise remain challenges, competition from solar-plus-storage, regional rivals, and dependence on external financing pose additional risks. In the near term, a transitional phase using SMR + CCS could leverage Albania’s gas assets to scale hydrogen production while renewables mature. Overall, Albania’s hydrogen future hinges on targeted investments, supportive policies, and capacity building aligned with EU Green Deal objectives, with solar-powered electrolysis offering the potential to deliver environmentally sustainable green hydrogen at costs below 5.7 €/kg H 2 .

Suggested Citation

  • Andi Mehmeti & Endrit Elezi & Armila Xhebraj & Mira Andoni & Ylber Bezo, 2025. "Is Green Hydrogen a Strategic Opportunity for Albania? A Techno-Economic, Environmental, and SWOT Analysis," Clean Technol., MDPI, vol. 7(4), pages 1-25, October.
  • Handle: RePEc:gam:jcltec:v:7:y:2025:i:4:p:86-:d:1767173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/7/4/86/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/7/4/86/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    2. Devinder Mahajan & Kun Tan & T. Venkatesh & Pradheep Kileti & Clive R. Clayton, 2022. "Hydrogen Blending in Gas Pipeline Networks—A Review," Energies, MDPI, vol. 15(10), pages 1-32, May.
    3. Evangelos Grigoroudis & Vassilis S. Kouikoglou & Yannis A. Phillis & Fotis D. Kanellos, 2021. "Energy sustainability: a definition and assessment model," Operational Research, Springer, vol. 21(3), pages 1845-1885, September.
    4. Eliseo Curcio, 2025. "Techno-Economic Analysis of Hydrogen Production: Costs, Policies, and Scalability in the Transition to Net-Zero," Papers 2502.12211, arXiv.org.
    5. Carlos Barrera-Singaña & María Paz Comech & Hugo Arcos, 2025. "A Comprehensive Review on the Integration of Renewable Energy Through Advanced Planning and Optimization Techniques," Energies, MDPI, vol. 18(11), pages 1-23, June.
    6. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    7. Praveen Cheekatamarla, 2024. "Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors," Energies, MDPI, vol. 17(4), pages 1-21, February.
    8. Tang, Ou & Rehme, Jakob & Cerin, Pontus, 2022. "Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?," Energy, Elsevier, vol. 241(C).
    9. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    10. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    11. Ahmed I. Osman & Mahmoud Nasr & A. R. Mohamed & Amal Abdelhaleem & Ali Ayati & Mohamed Farghali & Ala'a H. Al‐Muhtaseb & Ahmed S. Al‐Fatesh & David W. Rooney, 2024. "Life cycle assessment of hydrogen production, storage, and utilization toward sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    12. Muhammed Y. Worku, 2022. "Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    13. Jan L. Bednarczyk & Katarzyna Brzozowska-Rup & Sławomir Luściński, 2022. "Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy," Energies, MDPI, vol. 15(15), pages 1-23, July.
    14. Pasquale Marcello Falcone, 2023. "Sustainable Energy Policies in Developing Countries: A Review of Challenges and Opportunities," Energies, MDPI, vol. 16(18), pages 1-19, September.
    15. Emmanuel Stamatakis & Ewald Perwög & Ermis Garyfallos & Mercedes Sanz Millán & Emmanuel Zoulias & Nikolaos Chalkiadakis, 2022. "Hydrogen in Grid Balancing: The European Market Potential for Pressurized Alkaline Electrolyzers," Energies, MDPI, vol. 15(2), pages 1-50, January.
    16. Leonhard Povacz & Ramchandra Bhandari, 2023. "Analysis of the Levelized Cost of Renewable Hydrogen in Austria," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    17. Janssen, Jacob L.L.C.C. & Weeda, Marcel & Detz, Remko J. & van der Zwaan, Bob, 2022. "Country-specific cost projections for renewable hydrogen production through off-grid electricity systems," Applied Energy, Elsevier, vol. 309(C).
    18. Busch, P. & Kendall, A. & Lipman, T., 2023. "A systematic review of life cycle greenhouse gas intensity values for hydrogen production pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Alessandro Franco & Caterina Giovannini, 2023. "Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    20. Bolz, Susanna & Thiele, Julian & Wendler, Tobias, 2024. "Regional capabilities and hydrogen adoption barriers," Energy Policy, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    2. Leonhard Povacz & Ramchandra Bhandari, 2023. "Analysis of the Levelized Cost of Renewable Hydrogen in Austria," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    3. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    4. Bachirou Djibo Boubé & Ramchandra Bhandari & Moussa Mounkaila Saley & Abdou Latif Bonkaney & Rabani Adamou, 2025. "Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers," Energies, MDPI, vol. 18(7), pages 1-23, April.
    5. Wang, Xiongzheng & Meng, Xin & Nie, Gongzhe & Li, Binghui & Yang, Haoran & He, Mingzhi, 2024. "Optimization of hydrogen production in multi-Electrolyzer systems: A novel control strategy for enhanced renewable energy utilization and Electrolyzer lifespan," Applied Energy, Elsevier, vol. 376(PB).
    6. Ahmadullah, Ahmad Bilal & Rahimi, Mohammad Amin & Ulfat, Dawood Shah & Irshad, Ahmad Shah & Doost, Ziaul Haq & Wali, Najibullah & Karimi, Bashir Ahmad, 2025. "Decarbonizing Afghanistan: The most cost-effective renewable energy system for hydrogen production," Energy, Elsevier, vol. 324(C).
    7. Chen, Yuanyi & Zheng, Yanchong & Hu, Simon & Xie, Shiwei & Yang, Qiang, 2024. "Risk-averse energy dispatch for hybrid energy refueling stations considering Boundedly rational mixed user equilibrium and operational uncertainties," Applied Energy, Elsevier, vol. 376(PA).
    8. Can Yin & Lifu Jin, 2025. "Estimating Hydrogen Price Based on Combined Machine Learning Models by 2060: Especially Comparing Regional Variations in China," Sustainability, MDPI, vol. 17(3), pages 1-16, January.
    9. Javier Barba & Miguel Cañas-Carretón & Miguel Carrión & Gabriel R. Hernández-Labrado & Carlos Merino & José Ignacio Muñoz & Rafael Zárate-Miñano, 2025. "Integrating Hydrogen into Power Systems: A Comprehensive Review," Sustainability, MDPI, vol. 17(13), pages 1-64, July.
    10. Jettarat Janmontree & Aditya Shinde & Hartmut Zadek & Sebastian Trojahn & Kasin Ransikarbum, 2025. "A Strategic Hydrogen Supplier Assessment Using a Hybrid MCDA Framework with a Game Theory-Driven Criteria Analysis," Energies, MDPI, vol. 18(13), pages 1-27, July.
    11. Nestor F. Guerrero-Rodríguez & Daniel A. De La Rosa-Leonardo & Ricardo Tapia-Marte & Francisco A. Ramírez-Rivera & Juan Faxas-Guzmán & Alexis B. Rey-Boué & Enrique Reyes-Archundia, 2024. "An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production," Sustainability, MDPI, vol. 16(13), pages 1-29, June.
    12. Kotowicz, Janusz & Uchman, Wojciech & Jurczyk, Michał & Sekret, Robert, 2023. "Evaluation of the potential for distributed generation of green hydrogen using metal-hydride storage methods," Applied Energy, Elsevier, vol. 344(C).
    13. Sgaramella, Antonio & Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2025. "A techno-economic analysis of hydrogen refuelling and electric fast-charging stations: Effects on cost-competitiveness of zero-emission trucks," Energy, Elsevier, vol. 331(C).
    14. Moradpoor, Iraj & Syri, Sanna & Santasalo-Aarnio, Annukka, 2023. "Green hydrogen production for oil refining – Finnish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    15. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    16. Bogdzinski, Heidi & Sergio, Ivan & Wedemeier, Jan, 2025. "Unveiling the impact of green energy on green productivity: A focus on hydrogen and the green transition in European regions," Economic Analysis and Policy, Elsevier, vol. 86(C), pages 1064-1082.
    17. Arkadiusz Małek & Andrzej Marciniak, 2025. "Operational Analysis of Power Generation from a Photovoltaic–Wind Mix and Low-Emission Hydrogen Production," Energies, MDPI, vol. 18(10), pages 1-25, May.
    18. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    19. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    20. Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:7:y:2025:i:4:p:86-:d:1767173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.