IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v7y2025i3p76-d1739285.html
   My bibliography  Save this article

From Waste to Hydrogen: Utilizing Waste as Feedstock or Catalysts for Hydrogen Generation

Author

Listed:
  • David Tian Hren

    (Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia)

  • Andreja Nemet

    (Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia)

  • Danijela Urbancl

    (Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia)

Abstract

With the world facing the twin pressures of a warming climate and an ever-increasing amount of waste, it is becoming increasingly clear that we need to rethink the way we generate energy and use materials. Despite growing awareness, our energy systems are still largely dependent on fossil fuels and characterized by a linear ‘take-make-dispose’ model. This leaves us vulnerable to supply disruptions, rising greenhouse gas emissions, and the depletion of critical raw materials. Hydrogen is emerging as a potential carbon-free energy vector that can overcome both challenges if it is produced sustainably from renewable sources. This study reviews hydrogen production from a circular economy perspective, considering industrial, agricultural, and municipal solid waste as a resource rather than a burden. The focus is on the reuse of waste as a catalyst or catalyst support for hydrogen production. Firstly, the role of hydrogen as a new energy carrier is explored along with possible routes of waste valorization in the process of hydrogen production. This is followed by an analysis of where and how catalysts from waste can be utilized within various hydrogen production processes, namely those based on using fossil fuels as a source, biomass as a source, and electrocatalytic applications.

Suggested Citation

  • David Tian Hren & Andreja Nemet & Danijela Urbancl, 2025. "From Waste to Hydrogen: Utilizing Waste as Feedstock or Catalysts for Hydrogen Generation," Clean Technol., MDPI, vol. 7(3), pages 1-33, September.
  • Handle: RePEc:gam:jcltec:v:7:y:2025:i:3:p:76-:d:1739285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/7/3/76/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/7/3/76/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seunghyun Cheon & Manhee Byun & Dongjun Lim & Hyunjun Lee & Hankwon Lim, 2021. "Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis," Energies, MDPI, vol. 14(19), pages 1-19, September.
    2. Gao, Yuchen & Jiang, Jianguo & Meng, Yuan & Aihemaiti, Aikelaimu & Ju, Tongyao & Chen, Xuejing & Yan, Feng, 2020. "A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming," Renewable Energy, Elsevier, vol. 149(C), pages 786-793.
    3. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    4. Min, Shixiong & Duan, Yan & Li, Yanan & Wang, Fang, 2020. "Biomass-derived self-supported porous carbon membrane embedded with Co nanoparticles as an advanced electrocatalyst for efficient and robust hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 155(C), pages 447-455.
    5. Guo, Feiqiang & Liang, Shuang & Zhao, Xingmin & Jia, Xiaopeng & Peng, Kuangye & Jiang, Xiaochen & Qian, Lin, 2019. "Catalytic reforming of biomass pyrolysis tar using the low-cost steel slag as catalyst," Energy, Elsevier, vol. 189(C).
    6. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    7. Jhulimar Castro & Jonathan Leaver & Shusheng Pang, 2022. "Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review," Energies, MDPI, vol. 15(22), pages 1-37, November.
    8. Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
    9. Santanu Kumar Dash & Suprava Chakraborty & Devaraj Elangovan, 2023. "A Brief Review of Hydrogen Production Methods and Their Challenges," Energies, MDPI, vol. 16(3), pages 1-17, January.
    10. Djangbadjoa Gbiete & Satyanarayana Narra & Damgou Mani Kongnine & Mona-Maria Narra & Michael Nelles, 2024. "Insights into Biohydrogen Production Through Dark Fermentation of Food Waste: Substrate Properties, Inocula, and Pretreatment Strategies," Energies, MDPI, vol. 17(24), pages 1-32, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    2. Grouiez, Pascal & Debref, Romain & Vivien, Franck-Dominique & Befort, Nicolas, 2023. "The complex relationships between non-food agriculture and the sustainable bioeconomy: The French case," Ecological Economics, Elsevier, vol. 214(C).
    3. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    4. Bruno Michel Roman Pais Seles & Janaina Mascarenhas & Ana Beatriz Lopes de Sousa Jabbour & Adriana Hoffman Trevisan, 2022. "Smoothing the circular economy transition: The role of resources and capabilities enablers," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1814-1837, May.
    5. Davide Bruno & Marinella Ferrara & Felice D’Alessandro & Alberto Mandelli, 2022. "The Role of Design in the CE Transition of the Furniture Industry—The Case of the Italian Company Cassina," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    6. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    7. Francesca Gennari, 2023. "The transition towards a circular economy. A framework for SMEs," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(4), pages 1423-1457, December.
    8. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    9. Risa Arai & Martin Calisto Friant & Walter J. V. Vermeulen, 2024. "The Japanese Circular Economy and Sound Material-Cycle Society Policies: Discourse and Policy Analysis," Circular Economy and Sustainability, Springer, vol. 4(1), pages 619-650, March.
    10. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    11. Michael Edward Allkins & Tshepo Johannes Chauke & Portia Pearl Siyanda Sifolo, 2025. "Delivering Extraordinary Adventure Experiences During the “Chthulucene”: Circular Economy Challenges and Digital Solutions for the Environmentally Conscious Visitor," Sustainability, MDPI, vol. 17(2), pages 1-14, January.
    12. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    13. Dragana Ostic & Ummar Faruk Saeed & Angelina Kissiwaa Twum & Rahmatu Chibsah, 2025. "Transition Toward a Sustainable Circular Economy: A Perspective on Green Innovation and Governance Policy Using a Novel MMQR Approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(4), pages 5719-5741, August.
    14. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    15. Łukasz Brzeziński & Adam Kolinski, 2024. "Challenges of the Green Transformation of Transport in Poland," Sustainability, MDPI, vol. 16(8), pages 1-34, April.
    16. Baoting Peng & Xin Shen, 2024. "Does Environmental Regulation Affect Circular Economy Performance? Evidence from China," Sustainability, MDPI, vol. 16(11), pages 1-19, May.
    17. Sandra Grèzes-Bürcher & Vincent Grèzes, 2024. "Designing a Sustainable, Circular Culinary System," Circular Economy and Sustainability, Springer, vol. 4(4), pages 2799-2821, December.
    18. Nikos Chatzistamoulou & Phoebe Koundouri, 2020. "The Economics of Sustainable Development," DEOS Working Papers 2005, Athens University of Economics and Business.
    19. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    20. Yu Hao & Yingting Wang & Qiuwei Wu & Shiwei Sun & Weilu Wang & Menglin Cui, 2020. "What affects residents' participation in the circular economy for sustainable development? Evidence from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1251-1268, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:7:y:2025:i:3:p:76-:d:1739285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.